{"title":"In situ synthesis of a Bi2O3/Bi2S3 composite heterojunction for the electrochemical characterization of supercapacitors","authors":"Wenting Chen, Jiacheng Zheng, Yulong Deng, Chengliao Deng, Xiaoming Cai, Jinming Cai, Honglin Tan","doi":"10.1039/d5dt00026b","DOIUrl":null,"url":null,"abstract":"This study employs a two-step hydrothermal method to <em>in situ</em> introduce sulfur into a Bi<small><sub>2</sub></small>O<small><sub>3</sub></small> matrix. The synthesized material displays a specific capacitance of 305.57 F g<small><sup>−1</sup></small> (2 A g<small><sup>−1</sup></small>) and achieves a cycling stability of 94.12% (10 A g<small><sup>−1</sup></small>), evidencing the enhancement of both capacitance and cycling stability attributed to the heterojunction. The existence of a built-in electric field was confirmed <em>via</em> theoretical calculations, highlighting the interactions between the electrode materials and ions. In addition, devices were constructed to demonstrate the practicality in real-world applications. This study proposes an effective methodology for the <em>in situ</em> synthesis of heterojunctions, offering fresh perspectives on the development of electrode materials for supercapacitors.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"89 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00026b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs a two-step hydrothermal method to in situ introduce sulfur into a Bi2O3 matrix. The synthesized material displays a specific capacitance of 305.57 F g−1 (2 A g−1) and achieves a cycling stability of 94.12% (10 A g−1), evidencing the enhancement of both capacitance and cycling stability attributed to the heterojunction. The existence of a built-in electric field was confirmed via theoretical calculations, highlighting the interactions between the electrode materials and ions. In addition, devices were constructed to demonstrate the practicality in real-world applications. This study proposes an effective methodology for the in situ synthesis of heterojunctions, offering fresh perspectives on the development of electrode materials for supercapacitors.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.