Artificial Intelligence for the Discovery of Safe and Effective Flame Retardants

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xiaojia Chen, Min Nian, Feng Zhao, Yu Ma, Jingzhi Yao, Siyi Wang, Xing Chen, Dan Li, Mingliang Fang
{"title":"Artificial Intelligence for the Discovery of Safe and Effective Flame Retardants","authors":"Xiaojia Chen, Min Nian, Feng Zhao, Yu Ma, Jingzhi Yao, Siyi Wang, Xing Chen, Dan Li, Mingliang Fang","doi":"10.1021/acs.est.4c14787","DOIUrl":null,"url":null,"abstract":"Organophosphorus flame retardants (OPFRs) are important chemical additives that are used in commercial products. However, owing to increasing health concerns, the discovery of new OPFRs has become imperative. Herein, we propose an explainable artificial intelligence-assisted product design (AIPD) methodological framework for screening novel, safe, and effective OPFRs. Using a deep neural network, we established a flame retardancy prediction model with an accuracy of 0.90. Employing the SHapley Additive exPlanations approach, we have identified the Morgan 507 (P═N connected to a benzene ring) and 114 (quaternary carbon) substructures as promoting units in flame retardancy. Subsequently, approximately 600 compounds were selected as OPFR candidates from the ZINC database. Further refinement was achieved through a comprehensive scoring system that incorporated absorption, toxicity, and persistence, thereby yielding six prospective candidates. We experimentally validated these candidates and identified compound Z2 as a promising candidate, which was not toxic to zebrafish embryos. Our methodological framework leverages AIPD to effectively guide the discovery of novel flame retardants, significantly reducing both developmental time and costs.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c14787","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organophosphorus flame retardants (OPFRs) are important chemical additives that are used in commercial products. However, owing to increasing health concerns, the discovery of new OPFRs has become imperative. Herein, we propose an explainable artificial intelligence-assisted product design (AIPD) methodological framework for screening novel, safe, and effective OPFRs. Using a deep neural network, we established a flame retardancy prediction model with an accuracy of 0.90. Employing the SHapley Additive exPlanations approach, we have identified the Morgan 507 (P═N connected to a benzene ring) and 114 (quaternary carbon) substructures as promoting units in flame retardancy. Subsequently, approximately 600 compounds were selected as OPFR candidates from the ZINC database. Further refinement was achieved through a comprehensive scoring system that incorporated absorption, toxicity, and persistence, thereby yielding six prospective candidates. We experimentally validated these candidates and identified compound Z2 as a promising candidate, which was not toxic to zebrafish embryos. Our methodological framework leverages AIPD to effectively guide the discovery of novel flame retardants, significantly reducing both developmental time and costs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信