Clara Serrano, Katerina Savva, Maria Fernández-Altimira, Marinella Farré, Maria Vila-Costa, Marta Llorca
{"title":"Effects of bioplastics and their leachates on marine bacterial communities","authors":"Clara Serrano, Katerina Savva, Maria Fernández-Altimira, Marinella Farré, Maria Vila-Costa, Marta Llorca","doi":"10.1016/j.watres.2025.123584","DOIUrl":null,"url":null,"abstract":"Biobased biodegradable plastics (bioplastics) are promising alternatives fuel-based plastics. However, higher additive content is generally used to perform similarly to fuel-based materials. Moreover, plastic additives are not covalently bound to carbon chains and can leach into aquatic environments such as seawater, potentially impacting marine biota, though the extent of these effects is not yet fully understood. To evaluate the leaching behaviour in seawater of plastic additives from bioplastics materials and its impact on coastal surface marine bacterial communities, microcosm experiments were conducted using seawater amended with non-aged pellets of polylactic acid (PLA), poly-hydroxybutyrate (PHB), and commercial materials, a knife of PLA and a bag of PLA&PHB, under biotic and abiotic conditions for two months. Samples were taken weekly to study the bacterial abundance, bi-weekly to evaluate the leaching process and potential biodegradation products and, finally, at the end of the experiment to study the microbial communities. Chemical analysis was performed using suspect screening by means of Liquid Chromatography coupled to High-Resolution Mass Spectrometry (LC-HRMS) equipped with Electrospray Ionization source working in positive and negative conditions. The experiment showed that 177 compounds were tentatively identified at confidence level 2, including plasticizers, UV filters, flame retardants, and PLA- and PHB-related degradation products, which were detected in similar proportions under abiotic and biotic processes. Bacterial communities exposed to PLA showed higher production and significant differences in the community composition, with PLA degraders being identified in the different plastispheres studied. Leachates impacted differently microbial communities in the free-living fraction, particle-attached fraction and in the plastisphere, indicating taxa-specific responses. To the best of our knowledge, this is the first study providing further insights into the influence of bioplastics and their leachates on marine microbial communities, contributing to our understanding of bioplastics’ effects on the global oceans.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"23 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123584","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biobased biodegradable plastics (bioplastics) are promising alternatives fuel-based plastics. However, higher additive content is generally used to perform similarly to fuel-based materials. Moreover, plastic additives are not covalently bound to carbon chains and can leach into aquatic environments such as seawater, potentially impacting marine biota, though the extent of these effects is not yet fully understood. To evaluate the leaching behaviour in seawater of plastic additives from bioplastics materials and its impact on coastal surface marine bacterial communities, microcosm experiments were conducted using seawater amended with non-aged pellets of polylactic acid (PLA), poly-hydroxybutyrate (PHB), and commercial materials, a knife of PLA and a bag of PLA&PHB, under biotic and abiotic conditions for two months. Samples were taken weekly to study the bacterial abundance, bi-weekly to evaluate the leaching process and potential biodegradation products and, finally, at the end of the experiment to study the microbial communities. Chemical analysis was performed using suspect screening by means of Liquid Chromatography coupled to High-Resolution Mass Spectrometry (LC-HRMS) equipped with Electrospray Ionization source working in positive and negative conditions. The experiment showed that 177 compounds were tentatively identified at confidence level 2, including plasticizers, UV filters, flame retardants, and PLA- and PHB-related degradation products, which were detected in similar proportions under abiotic and biotic processes. Bacterial communities exposed to PLA showed higher production and significant differences in the community composition, with PLA degraders being identified in the different plastispheres studied. Leachates impacted differently microbial communities in the free-living fraction, particle-attached fraction and in the plastisphere, indicating taxa-specific responses. To the best of our knowledge, this is the first study providing further insights into the influence of bioplastics and their leachates on marine microbial communities, contributing to our understanding of bioplastics’ effects on the global oceans.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.