{"title":"Computational Ab Initio Approaches for Area-Selective Atomic Layer Deposition: Methods, Status, and Perspectives","authors":"Fabian Pieck, Ralf Tonner-Zech","doi":"10.1021/acs.chemmater.4c03477","DOIUrl":null,"url":null,"abstract":"Area-selective atomic layer deposition (AS-ALD) has emerged as a transformative technique in nanotechnology, enabling the precise deposition of materials on designated substrates while preventing unwanted growth on adjacent surfaces. This capability is critical for applications in microelectronics, catalysis, and energy technologies. Computational methods, particularly density functional theory (DFT), are indispensable for uncovering the mechanisms underlying AS-ALD, providing insights into surface interactions, selectivity mechanisms, and precursor design. This review introduces the theoretical background of computational techniques applied to AS-ALD and provides a detailed overview of their applications. Special emphasis is placed on the use of <i>ab initio</i> methods to explore surface chemistry, optimize precursor and inhibitor properties, and improve selectivity. A comprehensive overview of the literature is given with an analysis of research questions targeted, and methods used. By consolidating the state of knowledge and identifying future challenges, this work aims to guide researchers in further leveraging computational approaches to drive innovations in AS-ALD processes.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"89 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03477","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Area-selective atomic layer deposition (AS-ALD) has emerged as a transformative technique in nanotechnology, enabling the precise deposition of materials on designated substrates while preventing unwanted growth on adjacent surfaces. This capability is critical for applications in microelectronics, catalysis, and energy technologies. Computational methods, particularly density functional theory (DFT), are indispensable for uncovering the mechanisms underlying AS-ALD, providing insights into surface interactions, selectivity mechanisms, and precursor design. This review introduces the theoretical background of computational techniques applied to AS-ALD and provides a detailed overview of their applications. Special emphasis is placed on the use of ab initio methods to explore surface chemistry, optimize precursor and inhibitor properties, and improve selectivity. A comprehensive overview of the literature is given with an analysis of research questions targeted, and methods used. By consolidating the state of knowledge and identifying future challenges, this work aims to guide researchers in further leveraging computational approaches to drive innovations in AS-ALD processes.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.