Menghan Liu, Sydney B. Blattman, Mai Takahashi, Nandan Mandayam, Wenyan Jiang, Panos Oikonomou, Sohail F. Tavazoie, Saeed Tavazoie
{"title":"Conserved genetic basis for microbial colonization of the gut","authors":"Menghan Liu, Sydney B. Blattman, Mai Takahashi, Nandan Mandayam, Wenyan Jiang, Panos Oikonomou, Sohail F. Tavazoie, Saeed Tavazoie","doi":"10.1016/j.cell.2025.03.010","DOIUrl":null,"url":null,"abstract":"Despite the fundamental importance of gut microbes, the genetic basis of their colonization remains largely unexplored. Here, by applying cross-species genotype-habitat association at the tree-of-life scale, we identify conserved microbial gene modules associated with gut colonization. Across thousands of species, we discovered 79 taxonomically diverse putative colonization factors organized into operonic and non-operonic modules. They include previously characterized colonization pathways such as autoinducer-2 biosynthesis and novel processes including tRNA modification and translation. <em>In vivo</em> functional validation revealed YigZ (IMPACT family) and tRNA hydroxylation protein-P (TrhP) are required for <em>E. coli</em> intestinal colonization. Overexpressing YigZ alone is sufficient to enhance colonization of the poorly colonizing MG1655 <em>E. coli</em> by >100-fold. Moreover, natural allelic variations in YigZ impact inter-strain colonization efficiency. Our findings highlight the power of large-scale comparative genomics in revealing the genetic basis of microbial adaptations. These broadly conserved colonization factors may prove critical for understanding gastrointestinal (GI) dysbiosis and developing therapeutics.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"18 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.03.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the fundamental importance of gut microbes, the genetic basis of their colonization remains largely unexplored. Here, by applying cross-species genotype-habitat association at the tree-of-life scale, we identify conserved microbial gene modules associated with gut colonization. Across thousands of species, we discovered 79 taxonomically diverse putative colonization factors organized into operonic and non-operonic modules. They include previously characterized colonization pathways such as autoinducer-2 biosynthesis and novel processes including tRNA modification and translation. In vivo functional validation revealed YigZ (IMPACT family) and tRNA hydroxylation protein-P (TrhP) are required for E. coli intestinal colonization. Overexpressing YigZ alone is sufficient to enhance colonization of the poorly colonizing MG1655 E. coli by >100-fold. Moreover, natural allelic variations in YigZ impact inter-strain colonization efficiency. Our findings highlight the power of large-scale comparative genomics in revealing the genetic basis of microbial adaptations. These broadly conserved colonization factors may prove critical for understanding gastrointestinal (GI) dysbiosis and developing therapeutics.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.