{"title":"Lanthanide-Selective Artificial Channels","authors":"Harekrushna Behera, Tyler J. Duncan, Laxmicharan Samineni, Hyeonji Oh, Ankit Jogdand, Arnav Karnik, Raman Dhiman, Aida Fica, Tzu-Yun Hsieh, Venkat Ganesan, Manish Kumar","doi":"10.1021/acsnano.4c17675","DOIUrl":null,"url":null,"abstract":"Lanthanides serve as essential elements for modern technology, playing critical roles in batteries, wind turbines, portable electronics, and energy-efficient lighting. Purifying lanthanides from ores and recycling them from end-of-life consumer materials are costly and damaging to the environment due to inefficient separation technologies. In this study, we present a new approach for lanthanide separations using supramolecular membrane channel nanopores based on a pillar[5]arene scaffold with appended diphenylphosphine oxide (DPP) ligands. These channels show high transport selectivity (>18:1) of the middle lanthanides, europium (Eu<sup>3+</sup>) and terbium (Tb<sup>3+</sup>) ions, over monovalent K<sup>+</sup> ions and also excluded other common mono- and divalent metal ions (Na<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) including protons. These membrane channels also have high lanthanide–lanthanide transport selectivity with Eu<sup>3+</sup>/La<sup>3+</sup> selectivity of >40 and Eu<sup>3+</sup>/Yb<sup>3+</sup> selectivity of ∼30. Additionally, they demonstrated significantly higher selectivities between middle lanthanides and both light and heavy lanthanides: Tb<sup>3+</sup>/La<sup>3+</sup> (∼140), Tb<sup>3+</sup>/Yb<sup>3+</sup> (∼72), Tb<sup>3+</sup>/Nd<sup>3+</sup> (∼58), and Eu<sup>3+</sup>/Nd<sup>3+</sup> (∼17), which are considerably higher than selectivities reported in studies using traditional solvent extraction methods. Molecular dynamics simulations indicate that the high selectivity observed is due to specific water-mediated interactions between the hydrated ions and the channel. Our findings could contribute to ongoing efforts to improve lanthanide separation efficiency and reduce the environmental impact associated with current methods.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"83 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17675","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lanthanides serve as essential elements for modern technology, playing critical roles in batteries, wind turbines, portable electronics, and energy-efficient lighting. Purifying lanthanides from ores and recycling them from end-of-life consumer materials are costly and damaging to the environment due to inefficient separation technologies. In this study, we present a new approach for lanthanide separations using supramolecular membrane channel nanopores based on a pillar[5]arene scaffold with appended diphenylphosphine oxide (DPP) ligands. These channels show high transport selectivity (>18:1) of the middle lanthanides, europium (Eu3+) and terbium (Tb3+) ions, over monovalent K+ ions and also excluded other common mono- and divalent metal ions (Na+, Ca2+, and Mg2+) including protons. These membrane channels also have high lanthanide–lanthanide transport selectivity with Eu3+/La3+ selectivity of >40 and Eu3+/Yb3+ selectivity of ∼30. Additionally, they demonstrated significantly higher selectivities between middle lanthanides and both light and heavy lanthanides: Tb3+/La3+ (∼140), Tb3+/Yb3+ (∼72), Tb3+/Nd3+ (∼58), and Eu3+/Nd3+ (∼17), which are considerably higher than selectivities reported in studies using traditional solvent extraction methods. Molecular dynamics simulations indicate that the high selectivity observed is due to specific water-mediated interactions between the hydrated ions and the channel. Our findings could contribute to ongoing efforts to improve lanthanide separation efficiency and reduce the environmental impact associated with current methods.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.