Scalable High-Performance Graphene Films Over Hundreds Micrometer Thickness via Sheargraphy

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-04 DOI:10.1002/smll.202410978
Min Cao, Senping Liu, Jiahao Lu, Zhenheng Sun, Yue Gao, Hang Li, Kaiwen Li, Ge Wang, Haiwen Lai, Peidong Fan, Bo Zhao, Shengying Cai, Zhen Xu, Yingjun Liu, Peng Li, Weiwei Gao, Chao Gao
{"title":"Scalable High-Performance Graphene Films Over Hundreds Micrometer Thickness via Sheargraphy","authors":"Min Cao,&nbsp;Senping Liu,&nbsp;Jiahao Lu,&nbsp;Zhenheng Sun,&nbsp;Yue Gao,&nbsp;Hang Li,&nbsp;Kaiwen Li,&nbsp;Ge Wang,&nbsp;Haiwen Lai,&nbsp;Peidong Fan,&nbsp;Bo Zhao,&nbsp;Shengying Cai,&nbsp;Zhen Xu,&nbsp;Yingjun Liu,&nbsp;Peng Li,&nbsp;Weiwei Gao,&nbsp;Chao Gao","doi":"10.1002/smll.202410978","DOIUrl":null,"url":null,"abstract":"<p>High-performance graphene films with hundreds of micron thicknesses are promising to solve severe thermal management demands owing to higher heat-carrying capacity. However, thick graphene films exhibit limited thermal conductivity below 1000 W m<sup>−1</sup> K<sup>−1</sup>, caused by internal wrinkle defects of sheets. Here, a sheargraphy strategy is proposed to precisely regulate the sheet arrangement of liquid crystals and achieve the 215 µm thick graphene films with a record in-plane thermal conductivity of 1380 W m<sup>−1</sup> K<sup>−1</sup>. Microscale shearing fields of 5 µm generated by horizontally moved wire array flatten sheet wrinkles and eliminate polycrystallinity of graphene oxide liquid crystals. The uniform liquid crystals impart condensed solid films with high ordering, thereby forming densified and flat stacked graphitic crystallites. The highest thermal flux, defined as thickness multiplied by thermal conductivity, reaches up to 0.3 W K<sup>−1</sup>, endowing thick film with long-distance rapid heat spreading capability and designability for heat transfer pathways. This work provides a valid methodology to regulate the ordering of 2D sheets and produce high heat-flux graphene films to solve growing thermal management challenges.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 20","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410978","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance graphene films with hundreds of micron thicknesses are promising to solve severe thermal management demands owing to higher heat-carrying capacity. However, thick graphene films exhibit limited thermal conductivity below 1000 W m−1 K−1, caused by internal wrinkle defects of sheets. Here, a sheargraphy strategy is proposed to precisely regulate the sheet arrangement of liquid crystals and achieve the 215 µm thick graphene films with a record in-plane thermal conductivity of 1380 W m−1 K−1. Microscale shearing fields of 5 µm generated by horizontally moved wire array flatten sheet wrinkles and eliminate polycrystallinity of graphene oxide liquid crystals. The uniform liquid crystals impart condensed solid films with high ordering, thereby forming densified and flat stacked graphitic crystallites. The highest thermal flux, defined as thickness multiplied by thermal conductivity, reaches up to 0.3 W K−1, endowing thick film with long-distance rapid heat spreading capability and designability for heat transfer pathways. This work provides a valid methodology to regulate the ordering of 2D sheets and produce high heat-flux graphene films to solve growing thermal management challenges.

Abstract Image

Abstract Image

可扩展的高性能石墨烯薄膜超过数百微米的厚度通过剪切
数百微米厚度的高性能石墨烯薄膜由于具有更高的热承载能力,有望解决严格的热管理需求。然而,由于薄片内部褶皱缺陷,厚石墨烯薄膜的导热系数在1000 W m−1 K−1以下受到限制。本文提出了一种剪切成像策略,以精确调节液晶的片状排列,并获得215 μ m厚的石墨烯薄膜,其面内导热系数达到1380 W m−1 K−1。水平移动线阵产生5µm的微尺度剪切场,使氧化石墨烯液晶的皱折变平,消除了其多晶性。均匀的液晶赋予高有序的凝聚态固体薄膜,从而形成致密的扁平堆积的石墨晶体。以厚度乘以导热系数定义的最高热通量可达0.3 W K−1,使厚膜具有长距离快速传热能力和传热路径的可设计性。这项工作提供了一种有效的方法来调节二维薄片的顺序,并生产高热流密度的石墨烯薄膜,以解决日益增长的热管理挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信