Sensitive amperometric immunosensor for pathogen antigen based on MoS2@AuNPs assembling dual-peptide as bioprobes with significant dual signal amplification
{"title":"Sensitive amperometric immunosensor for pathogen antigen based on MoS2@AuNPs assembling dual-peptide as bioprobes with significant dual signal amplification","authors":"Zongmei Zheng, Mingyang Wang, Jinlong Yuan, Junchong Liu, Haipeng Yu, Zhonghuang Yang, Wanjian Liu, Aihua Liu","doi":"10.1016/j.aca.2025.344015","DOIUrl":null,"url":null,"abstract":"It is crucial to timely and accurately identify the causative virus for early treatment and urgent prevention. Viral antigen detection can identify those people who are most likely at risk of spreading the disease, but most based on antibodies with limited stability and sensitivity. Peptides offer several advantages over antibodies, such as low cost, smaller size and good stability. The development of electrochemical immunoassay using specific peptide probes have the merits of good sensitivity and selectivity as well as good stability. Herein we report an amperometric immunosensor using peptides as capture probe and recognition probe. The molecular docking suggests that the two peptides of Pi (sequence: NFWISPKLAFALGGGKKKSC) and FK11 (sequence: WFLNDSELISML), bioscreened from phage display, bind to N-terminal domain of SARS-CoV-2 spike protein (SP). The peptide Pi is assembled on MoS<sub>2</sub>@AuNPs modified electrode to capture SARS-CoV-2 SP, which is recognized by peptide FK11-displayed phage to form Pi/SARS-CoV-2 SP/FK11-phage sandwich. Then anti-M13 phage conjugated horseradish peroxidase (HRP) (anti M13-HRP) was introduced to recognize the phage capsid protein pVIII to form M13 phage/anti M13-HRP to enrich thousands of HRP, which can further electrochemically catalyze H<sub>2</sub>O<sub>2</sub> reduction at highly conductive MoS<sub>2</sub>@AuNPs at − 0.35 V. Then amperometric immunosensor was constructed with linear range of 0.1−5000 pg/mL SARS-CoV-2 SP and detection limit of 0.074 pg/mL. The sensor also has good selectivity, batch reproducibility and stability, capable of detecting down to 10 transducing units/mL SARS-CoV-2 pseudoviruses. This work represents the first example of dual-peptide probes based sandwich-type electrochemical immunosensor integrated with dual signal amplification, which may provide a cost-effective assay platform in detecting real SARS-CoV-2 viruses for early diagnosis. The flexible and modular strategy can be extended to develop other type biosensors for a wide range of applications.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"37 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.344015","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is crucial to timely and accurately identify the causative virus for early treatment and urgent prevention. Viral antigen detection can identify those people who are most likely at risk of spreading the disease, but most based on antibodies with limited stability and sensitivity. Peptides offer several advantages over antibodies, such as low cost, smaller size and good stability. The development of electrochemical immunoassay using specific peptide probes have the merits of good sensitivity and selectivity as well as good stability. Herein we report an amperometric immunosensor using peptides as capture probe and recognition probe. The molecular docking suggests that the two peptides of Pi (sequence: NFWISPKLAFALGGGKKKSC) and FK11 (sequence: WFLNDSELISML), bioscreened from phage display, bind to N-terminal domain of SARS-CoV-2 spike protein (SP). The peptide Pi is assembled on MoS2@AuNPs modified electrode to capture SARS-CoV-2 SP, which is recognized by peptide FK11-displayed phage to form Pi/SARS-CoV-2 SP/FK11-phage sandwich. Then anti-M13 phage conjugated horseradish peroxidase (HRP) (anti M13-HRP) was introduced to recognize the phage capsid protein pVIII to form M13 phage/anti M13-HRP to enrich thousands of HRP, which can further electrochemically catalyze H2O2 reduction at highly conductive MoS2@AuNPs at − 0.35 V. Then amperometric immunosensor was constructed with linear range of 0.1−5000 pg/mL SARS-CoV-2 SP and detection limit of 0.074 pg/mL. The sensor also has good selectivity, batch reproducibility and stability, capable of detecting down to 10 transducing units/mL SARS-CoV-2 pseudoviruses. This work represents the first example of dual-peptide probes based sandwich-type electrochemical immunosensor integrated with dual signal amplification, which may provide a cost-effective assay platform in detecting real SARS-CoV-2 viruses for early diagnosis. The flexible and modular strategy can be extended to develop other type biosensors for a wide range of applications.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.