Atomically Unveiling the Phase Evolution in Weakly Coupled Layered Transition-Metal Phosphorus Trichalcogenide by Chalcogen Doping

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wing Ni Cheng, Ruihuan Duan, Mengmeng Niu, Xiaocang Han, Song Huang, Yu Liang, Jun Zhao, Zheng Liu, Jingsi Qiao, Xiaoxu Zhao
{"title":"Atomically Unveiling the Phase Evolution in Weakly Coupled Layered Transition-Metal Phosphorus Trichalcogenide by Chalcogen Doping","authors":"Wing Ni Cheng, Ruihuan Duan, Mengmeng Niu, Xiaocang Han, Song Huang, Yu Liang, Jun Zhao, Zheng Liu, Jingsi Qiao, Xiaoxu Zhao","doi":"10.1021/acs.nanolett.5c00826","DOIUrl":null,"url":null,"abstract":"The stacking configuration significantly influences the properties of van der Waals (vdW) layered magnets by dictating crystallographic and magnetic symmetries. Transition-metal phosphorus trichalcogenides (MPX<sub>3</sub>, X = S, Se) intrinsically exhibit diverse stacking polytypes, being an optimal platform for magnetic phase engineering. Unlike MX<sub>2</sub>, where chalcogen doping has a minimal impact on stacking, MPX<sub>3</sub> allows stacking control via elemental substitution. However, the atomic-scale mechanisms governing stacking variations remain unclear. Using scanning transmission electron microscopy (STEM) and density functional theory (DFT) calculations, we reveal that in <i>3d</i> transition metal MPX<sub>3</sub>, tuning the S/Se ratio induces a transition from the <i>C</i>2/<i>m</i> to <i>R</i>3̅ phase due to modified interlayer S–S/Se–Se and P–P interactions. In contrast, stacking control becomes challenging for <i>4d</i> CdPX<sub>3</sub>, due to relatively weak interlayer coupling. These insights provide a stacking basis for stacking polytypes in MPX<sub>3</sub>, paving the way for tuning magnetic couplings via stackingtronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"36 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00826","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stacking configuration significantly influences the properties of van der Waals (vdW) layered magnets by dictating crystallographic and magnetic symmetries. Transition-metal phosphorus trichalcogenides (MPX3, X = S, Se) intrinsically exhibit diverse stacking polytypes, being an optimal platform for magnetic phase engineering. Unlike MX2, where chalcogen doping has a minimal impact on stacking, MPX3 allows stacking control via elemental substitution. However, the atomic-scale mechanisms governing stacking variations remain unclear. Using scanning transmission electron microscopy (STEM) and density functional theory (DFT) calculations, we reveal that in 3d transition metal MPX3, tuning the S/Se ratio induces a transition from the C2/m to R3̅ phase due to modified interlayer S–S/Se–Se and P–P interactions. In contrast, stacking control becomes challenging for 4d CdPX3, due to relatively weak interlayer coupling. These insights provide a stacking basis for stacking polytypes in MPX3, paving the way for tuning magnetic couplings via stackingtronics.

Abstract Image

用硫掺杂原子揭示弱耦合层状过渡金属三卤代磷的相演化
堆叠构型通过决定晶体学和磁对称性,对范德华(vdW)层状磁体的特性产生重大影响。过渡金属磷三钙化物(MPX3,X = S、Se)本质上表现出多种堆叠多型性,是磁相工程的最佳平台。与 MX2 不同,MPX3 允许通过元素替代来控制堆叠,而 MX2 中掺杂的查尔根对堆叠的影响微乎其微。然而,有关堆叠变化的原子尺度机制仍不清楚。利用扫描透射电子显微镜(STEM)和密度泛函理论(DFT)计算,我们揭示了在 3d 过渡金属 MPX3 中,由于层间 S-Se/Se-Se 和 P-P 相互作用的改变,调整 S/Se 比率可诱导从 C2/m 到 R3̅ 相的转变。相比之下,由于层间耦合相对较弱,4d CdPX3 的堆叠控制变得具有挑战性。这些见解为 MPX3 的堆叠多类型提供了堆叠基础,为通过堆叠电子学调整磁耦合铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信