The influence of heating temperature on magnetization reversal process of SrCoO3−δ epitaxial thin film mediated through ionic liquid−gated technology

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
J. Zhang, L.F. Wang, J.C. Ma, T.C Su
{"title":"The influence of heating temperature on magnetization reversal process of SrCoO3−δ epitaxial thin film mediated through ionic liquid−gated technology","authors":"J. Zhang, L.F. Wang, J.C. Ma, T.C Su","doi":"10.1016/j.jallcom.2025.180240","DOIUrl":null,"url":null,"abstract":"The utilization of ionic liquid gating (ILG) as a gate dielectric to modulate the oxygen (O<sup>2−</sup>) ions of transition metal oxides and thereby control their various properties, holding potential applications in the area of electronics and energy storage. However, numerous experiments have indicated the challenge of fast and reversibly extracting or inserting O<sup>2−</sup> ions across the entire oxide structure at room temperature (RT). Here, the impact of ILG manipulation on magnetic properties in perovskite SrCoO<sub>3−δ</sub> (PV−SCO, 0 &lt; δ &lt; 0.25) epitaxial thin films is explored by varying the heating temperatures. The findings demonstrate that due to the difficulty of inserting O<sup>2−</sup> ions completely into the entire sample following manipulation with 0<!-- --> <!-- -->V<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mover is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2192;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;30&lt;/mn&gt;&lt;mi is=\"true\"&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.471ex\" role=\"img\" style=\"vertical-align: -0.028ex; margin-bottom: -0.323ex;\" viewbox=\"0 -1343.3 2110.3 1494.4\" width=\"4.901ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use x=\"-85\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><g transform=\"translate(341.3830253947031,0) scale(1.40375117876091,1)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><use x=\"1109\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(28,712)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(874,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6D\"></use><use transform=\"scale(0.707)\" x=\"833\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">30</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">30</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></script></span>+4<!-- --> <!-- -->V<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mover is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2192;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;30&lt;/mn&gt;&lt;mi is=\"true\"&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.471ex\" role=\"img\" style=\"vertical-align: -0.028ex; margin-bottom: -0.323ex;\" viewbox=\"0 -1343.3 2110.3 1494.4\" width=\"4.901ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use x=\"-85\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><g transform=\"translate(341.3830253947031,0) scale(1.40375117876091,1)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><use x=\"1109\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(28,712)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(874,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6D\"></use><use transform=\"scale(0.707)\" x=\"833\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">30</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">30</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></script></span>−4<!-- --> <!-- -->V gate voltages at RT, the magnetic hysteresis (<em>M−H</em>) loop displays a pronounced exchange bias (EB) effect attributed to the coexistence of the PV−SCO ferromagnetic (FM) phase and brownmillerite SrCoO<sub>2.5+<em>x</em></sub> (BM−SCO, 0 &lt; <em>x</em> &lt; 0.25) antiferromagnetic (AFM) phase in the final thin film. Upon increasing the heating temperature to 40 ℃, the BM−SCO and PV−SCO phases undergo rapid and reversible interconversion after stimulating with 0<!-- --> <!-- -->V<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mover is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2192;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;10&lt;/mn&gt;&lt;mi is=\"true\"&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.471ex\" role=\"img\" style=\"vertical-align: -0.028ex; margin-bottom: -0.323ex;\" viewbox=\"0 -1343.3 2110.3 1494.4\" width=\"4.901ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use x=\"-85\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><g transform=\"translate(341.3830253947031,0) scale(1.40375117876091,1)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><use x=\"1109\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(28,712)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(874,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6D\"></use><use transform=\"scale(0.707)\" x=\"833\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">10</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">10</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></script></span>+4<!-- --> <!-- -->V<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mover is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2192;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;10&lt;/mn&gt;&lt;mi is=\"true\"&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.471ex\" role=\"img\" style=\"vertical-align: -0.028ex; margin-bottom: -0.323ex;\" viewbox=\"0 -1343.3 2110.3 1494.4\" width=\"4.901ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use x=\"-85\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><g transform=\"translate(341.3830253947031,0) scale(1.40375117876091,1)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><use x=\"1109\" xlink:href=\"#MJMAIN-2192\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(28,712)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(874,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-6D\"></use><use transform=\"scale(0.707)\" x=\"833\" xlink:href=\"#MJMAIN-69\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-6E\" y=\"0\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">10</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mover is=\"true\"><mo is=\"true\">→</mo><mrow is=\"true\"><mn is=\"true\">10</mn><mi is=\"true\">min</mi></mrow></mover></mrow></math></script></span>−4<!-- --> <!-- -->V gate voltages, and the final thin film reveals a magnetic reversal process of a singular FM phase. Higher heating temperature will instigate irreversible electrochemical reactions between thin film's surface and the ionic liquid, leading to a significant degradation of both the structure and magnetic properties.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"80 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180240","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of ionic liquid gating (ILG) as a gate dielectric to modulate the oxygen (O2−) ions of transition metal oxides and thereby control their various properties, holding potential applications in the area of electronics and energy storage. However, numerous experiments have indicated the challenge of fast and reversibly extracting or inserting O2− ions across the entire oxide structure at room temperature (RT). Here, the impact of ILG manipulation on magnetic properties in perovskite SrCoO3−δ (PV−SCO, 0 < δ < 0.25) epitaxial thin films is explored by varying the heating temperatures. The findings demonstrate that due to the difficulty of inserting O2− ions completely into the entire sample following manipulation with 0 V30min+4 V30min−4 V gate voltages at RT, the magnetic hysteresis (M−H) loop displays a pronounced exchange bias (EB) effect attributed to the coexistence of the PV−SCO ferromagnetic (FM) phase and brownmillerite SrCoO2.5+x (BM−SCO, 0 < x < 0.25) antiferromagnetic (AFM) phase in the final thin film. Upon increasing the heating temperature to 40 ℃, the BM−SCO and PV−SCO phases undergo rapid and reversible interconversion after stimulating with 0 V10min+4 V10min−4 V gate voltages, and the final thin film reveals a magnetic reversal process of a singular FM phase. Higher heating temperature will instigate irreversible electrochemical reactions between thin film's surface and the ionic liquid, leading to a significant degradation of both the structure and magnetic properties.
利用离子液体浇口(ILG)作为栅电介质来调节过渡金属氧化物中的氧(O2-)离子,从而控制其各种特性,在电子学和能量存储领域具有潜在的应用前景。然而,大量实验表明,在室温(RT)下快速、可逆地在整个氧化物结构中提取或插入 O2- 离子是一项挑战。在此,我们通过改变加热温度来探讨 ILG 操作对过氧化物 SrCoO3-δ (PV-SCO, 0 < δ < 0.25) 外延薄膜磁性能的影响。研究结果表明,由于在 RT 条件下以 0 V→30min→30min+4 V→30min→30min-4 V 的栅极电压进行操作后很难将 O2- 离子完全插入整个样品,因此磁滞(M-H)环显示出明显的交换偏置(EB)效应,这归因于 PV-SCO 铁磁(FM)相和褐辉石 SrCoO2 的共存。5+x (BM-SCO, 0 < x < 0.25) 反铁磁 (AFM) 相共存。当加热温度升高到 40 ℃ 时,在 0 V→10min→10min+4 V→10min→10min-4 V 栅极电压的刺激下,BM-SCO 相和 PV-SCO 相发生快速、可逆的相互转化,最终薄膜显示出奇异 FM 相的磁反转过程。更高的加热温度会在薄膜表面和离子液体之间引发不可逆的电化学反应,从而导致结构和磁性能的显著退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信