Application of artificial intelligence for identification of peanut maturity using climatic variables and vegetation indices

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Thiago Orlando Costa Barboza, Jarlyson Brunno Costa Souza, Marcelo Araújo Junqueira Ferraz, Samira Luns Hatum de Almeida, Cristiane Pilon, George Vellidis, Rouverson Pereira da Silva, Adão Felipe dos Santos
{"title":"Application of artificial intelligence for identification of peanut maturity using climatic variables and vegetation indices","authors":"Thiago Orlando Costa Barboza, Jarlyson Brunno Costa Souza, Marcelo Araújo Junqueira Ferraz, Samira Luns Hatum de Almeida, Cristiane Pilon, George Vellidis, Rouverson Pereira da Silva, Adão Felipe dos Santos","doi":"10.1007/s11119-025-10237-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p> The hull scrape and vegetation indices are widely used for predicting peanut maturation, but they are time-consuming, subjective, labor-intensive, and fail to account for climate variables, reducing their accuracy.Thus, the objective was to verify the potential of using artificial intelligence associating IV and climate variables to predict the variability of peanut pod maturity in the field</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p> For this purpose, peanut maturity data collected on different dates in commercial fields in Brazil and the United States. In addition, high-resolution satellite images were used to calculate nine IV and four climatic variables for each area were acquired using the NASA-POWER platform. Four machine learning models were tested and the input for the training were selected using the Random Forest feature selection. Thus, the models were trained using 70% of the data for training and 30% for testing and applied the cross validation with K-fold.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The best results were obtained for the XGBoosting model with R<sup>2</sup> test values varying 0.90, 0.89, 0.93 and 0.87 and a minimum MAE and RMSE of 0.05. Except for the Georgia dataset where the MLP model presents the highest performance R<sup>2</sup> value of 0.93, MAE 0.05 and RMSE 0.06 for the test. The RBF models present the worst results with a low index of agreement (d) 0.4 for all the datasets demonstrating a low agreement between the predicted and observed values.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p> Combining the climatic variables was able to improve the model’s performance, however detailed information about the field such as topographic conditions and soil type seem to be a different approach to enhance the model performance. Using the calibrated model for overall dataset peanut farmers from any localities can use to monitor and map the PMI variability in the fields, improve the decision-making, decrease the loss and increase the kernels quality.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"8 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10237-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The hull scrape and vegetation indices are widely used for predicting peanut maturation, but they are time-consuming, subjective, labor-intensive, and fail to account for climate variables, reducing their accuracy.Thus, the objective was to verify the potential of using artificial intelligence associating IV and climate variables to predict the variability of peanut pod maturity in the field

Methods

For this purpose, peanut maturity data collected on different dates in commercial fields in Brazil and the United States. In addition, high-resolution satellite images were used to calculate nine IV and four climatic variables for each area were acquired using the NASA-POWER platform. Four machine learning models were tested and the input for the training were selected using the Random Forest feature selection. Thus, the models were trained using 70% of the data for training and 30% for testing and applied the cross validation with K-fold.

Results

The best results were obtained for the XGBoosting model with R2 test values varying 0.90, 0.89, 0.93 and 0.87 and a minimum MAE and RMSE of 0.05. Except for the Georgia dataset where the MLP model presents the highest performance R2 value of 0.93, MAE 0.05 and RMSE 0.06 for the test. The RBF models present the worst results with a low index of agreement (d) 0.4 for all the datasets demonstrating a low agreement between the predicted and observed values.

Conclusion

Combining the climatic variables was able to improve the model’s performance, however detailed information about the field such as topographic conditions and soil type seem to be a different approach to enhance the model performance. Using the calibrated model for overall dataset peanut farmers from any localities can use to monitor and map the PMI variability in the fields, improve the decision-making, decrease the loss and increase the kernels quality.

利用气候变量和植被指数识别花生成熟度的人工智能应用
摘要花生果皮刮削指数和植被指数被广泛用于花生成熟度预测,但它们耗时、主观、劳动强度大,且不能考虑气候变量,降低了预测的准确性。因此,目的是验证使用人工智能关联IV和气候变量预测花生豆荚成熟度变异性的潜力。方法为此目的,在巴西和美国的商业领域收集了不同日期的花生成熟度数据。此外,利用NASA-POWER平台获取的高分辨率卫星图像用于计算每个地区的9个IV和4个气候变量。测试了四个机器学习模型,并使用随机森林特征选择选择训练的输入。因此,使用70%的数据进行训练,30%的数据进行测试,并使用K-fold进行交叉验证。结果XGBoosting模型最优,R2检验值分别为0.90、0.89、0.93和0.87,最小MAE和RMSE为0.05。除乔治亚数据集的MLP模型表现出最高的性能R2值为0.93外,检验的MAE 0.05, RMSE 0.06。RBF模型的结果最差,所有数据集的一致性指数(d)为0.4,表明预测值和实测值之间的一致性较低。结合气候变量能够提高模型的性能,但是关于地形条件和土壤类型的详细信息似乎是提高模型性能的另一种方法。利用校正后的整体数据集模型,任何地区的花生种植者都可以使用该模型来监测和绘制田间PMI变化,从而改进决策,减少损失,提高籽粒质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信