Thiago Orlando Costa Barboza, Jarlyson Brunno Costa Souza, Marcelo Araújo Junqueira Ferraz, Samira Luns Hatum de Almeida, Cristiane Pilon, George Vellidis, Rouverson Pereira da Silva, Adão Felipe dos Santos
{"title":"Application of artificial intelligence for identification of peanut maturity using climatic variables and vegetation indices","authors":"Thiago Orlando Costa Barboza, Jarlyson Brunno Costa Souza, Marcelo Araújo Junqueira Ferraz, Samira Luns Hatum de Almeida, Cristiane Pilon, George Vellidis, Rouverson Pereira da Silva, Adão Felipe dos Santos","doi":"10.1007/s11119-025-10237-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p> The hull scrape and vegetation indices are widely used for predicting peanut maturation, but they are time-consuming, subjective, labor-intensive, and fail to account for climate variables, reducing their accuracy.Thus, the objective was to verify the potential of using artificial intelligence associating IV and climate variables to predict the variability of peanut pod maturity in the field</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p> For this purpose, peanut maturity data collected on different dates in commercial fields in Brazil and the United States. In addition, high-resolution satellite images were used to calculate nine IV and four climatic variables for each area were acquired using the NASA-POWER platform. Four machine learning models were tested and the input for the training were selected using the Random Forest feature selection. Thus, the models were trained using 70% of the data for training and 30% for testing and applied the cross validation with K-fold.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The best results were obtained for the XGBoosting model with R<sup>2</sup> test values varying 0.90, 0.89, 0.93 and 0.87 and a minimum MAE and RMSE of 0.05. Except for the Georgia dataset where the MLP model presents the highest performance R<sup>2</sup> value of 0.93, MAE 0.05 and RMSE 0.06 for the test. The RBF models present the worst results with a low index of agreement (d) 0.4 for all the datasets demonstrating a low agreement between the predicted and observed values.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p> Combining the climatic variables was able to improve the model’s performance, however detailed information about the field such as topographic conditions and soil type seem to be a different approach to enhance the model performance. Using the calibrated model for overall dataset peanut farmers from any localities can use to monitor and map the PMI variability in the fields, improve the decision-making, decrease the loss and increase the kernels quality.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"8 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10237-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The hull scrape and vegetation indices are widely used for predicting peanut maturation, but they are time-consuming, subjective, labor-intensive, and fail to account for climate variables, reducing their accuracy.Thus, the objective was to verify the potential of using artificial intelligence associating IV and climate variables to predict the variability of peanut pod maturity in the field
Methods
For this purpose, peanut maturity data collected on different dates in commercial fields in Brazil and the United States. In addition, high-resolution satellite images were used to calculate nine IV and four climatic variables for each area were acquired using the NASA-POWER platform. Four machine learning models were tested and the input for the training were selected using the Random Forest feature selection. Thus, the models were trained using 70% of the data for training and 30% for testing and applied the cross validation with K-fold.
Results
The best results were obtained for the XGBoosting model with R2 test values varying 0.90, 0.89, 0.93 and 0.87 and a minimum MAE and RMSE of 0.05. Except for the Georgia dataset where the MLP model presents the highest performance R2 value of 0.93, MAE 0.05 and RMSE 0.06 for the test. The RBF models present the worst results with a low index of agreement (d) 0.4 for all the datasets demonstrating a low agreement between the predicted and observed values.
Conclusion
Combining the climatic variables was able to improve the model’s performance, however detailed information about the field such as topographic conditions and soil type seem to be a different approach to enhance the model performance. Using the calibrated model for overall dataset peanut farmers from any localities can use to monitor and map the PMI variability in the fields, improve the decision-making, decrease the loss and increase the kernels quality.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.