X-class Flare on 2023 December 31 Observed by the Solar Ultraviolet Imaging Telescope on Board Aditya-L1

Soumya Roy, Durgesh Tripathi, Vishal Upendran, Sreejith Padinhatteeri, A. N. Ramaprakash, Nived V. N., K. Sankarasubramanian, Sami K. Solanki, Janmejoy Sarkar, Rahul Gopalakrishnan, Rushikesh Deogaonkar, Dibyendu Nandy and Dipankar Banerjee
{"title":"X-class Flare on 2023 December 31 Observed by the Solar Ultraviolet Imaging Telescope on Board Aditya-L1","authors":"Soumya Roy, Durgesh Tripathi, Vishal Upendran, Sreejith Padinhatteeri, A. N. Ramaprakash, Nived V. N., K. Sankarasubramanian, Sami K. Solanki, Janmejoy Sarkar, Rahul Gopalakrishnan, Rushikesh Deogaonkar, Dibyendu Nandy and Dipankar Banerjee","doi":"10.3847/2041-8213/adc387","DOIUrl":null,"url":null,"abstract":"We present the multiwavelength study of the ejection of a plasma blob from the limb flare SOL2023-12-31T21:36:00 from NOAA 13536 observed by the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1. We use SUIT observations along with those from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and Spectrometer/Telescope for Imaging X-rays (STIX) on board Solar Orbiter to infer the kinematics and thermal nature of the ejected blob and its connection to the associated flare. The observations show that the flare was comprised of two eruptions. The blob was ejected during the first eruption and later accelerated to velocities over 1500 km s−1 measured at a maximum projected height of ∼178 Mm from the Sun’s surface. The acceleration of the ejected plasma blob is cotemporal with the bursty appearance of the hard X-ray light curve recorded by STIX. Radio spectrogram observations from STEREO-A/WAVES and RSTN reveal type III bursts at the same time, indicative of magnetic reconnection. DEM analysis using AIA observations suggests the plasma blob is comprised of cooler and denser plasma in comparison to the ambient corona. To the best of our knowledge, this is the first observation of such a plasma blob in the near-ultraviolet providing crucial measurements for eruption thermodynamics.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adc387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the multiwavelength study of the ejection of a plasma blob from the limb flare SOL2023-12-31T21:36:00 from NOAA 13536 observed by the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1. We use SUIT observations along with those from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and Spectrometer/Telescope for Imaging X-rays (STIX) on board Solar Orbiter to infer the kinematics and thermal nature of the ejected blob and its connection to the associated flare. The observations show that the flare was comprised of two eruptions. The blob was ejected during the first eruption and later accelerated to velocities over 1500 km s−1 measured at a maximum projected height of ∼178 Mm from the Sun’s surface. The acceleration of the ejected plasma blob is cotemporal with the bursty appearance of the hard X-ray light curve recorded by STIX. Radio spectrogram observations from STEREO-A/WAVES and RSTN reveal type III bursts at the same time, indicative of magnetic reconnection. DEM analysis using AIA observations suggests the plasma blob is comprised of cooler and denser plasma in comparison to the ambient corona. To the best of our knowledge, this is the first observation of such a plasma blob in the near-ultraviolet providing crucial measurements for eruption thermodynamics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信