Wei Ou, Xin-Xin Zhang, Bin Li, Ying Tuo, Ren-Xuan Lin, Peng-Fei Liu, Jian-Ping Guo, Hio-Cheng Un, Ming-Hao Li, Jia-Hao Lei, Xiao-Jing Gao, Fu-Fu Zheng, Ling-Wu Chen, Ling-Li Long, Zong-Ren Wang
{"title":"Integrated proteogenomic characterization of localized prostate cancer identifies biological insights and subtype-specific therapeutic strategies","authors":"Wei Ou, Xin-Xin Zhang, Bin Li, Ying Tuo, Ren-Xuan Lin, Peng-Fei Liu, Jian-Ping Guo, Hio-Cheng Un, Ming-Hao Li, Jia-Hao Lei, Xiao-Jing Gao, Fu-Fu Zheng, Ling-Wu Chen, Ling-Li Long, Zong-Ren Wang","doi":"10.1038/s41467-025-58569-w","DOIUrl":null,"url":null,"abstract":"<p>Localized prostate cancer (PCa) is highly variable in their response to therapies. Although a fraction of this heterogeneity can be explained by clinical factors or genomic and transcriptomic profiling, the proteomic-based profiling of aggressive PCa remains poorly understood. Here, we profiled the genome, transcriptome, proteome and phosphoproteome of 145 cases of localized PCa in Chinese patients. Proteome-based stratification of localized PCa revealed three subtypes with distinct molecular features: immune subgroup, arachidonic acid metabolic subgroup and sialic acid metabolic subgroup with highest biochemical recurrence (BCR) rates. Further, we nominated NANS protein, a key enzyme in sialic acid synthesis as a potential prognostic biomarker for aggressive PCa and validated in two independent cohorts. Finally, taking advantage of cell-derived orthotopic transplanted mouse models, single-cell RNA sequencing (scRNA-seq) and immunofluorescence analysis, we revealed that targeting NANS can reverse the immunosuppressive microenvironment through restricting the sialoglycan-sialic acid-recognizing immunoglobulin superfamily lectin (Siglec) axis, thereby inhibiting tumor growth of PCa. In sum, we integrate multi-omic data to refine molecular subtyping of localized PCa, and identify NANS as a potential prognostic biomarker and therapeutic option for aggressive PCa.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58569-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Localized prostate cancer (PCa) is highly variable in their response to therapies. Although a fraction of this heterogeneity can be explained by clinical factors or genomic and transcriptomic profiling, the proteomic-based profiling of aggressive PCa remains poorly understood. Here, we profiled the genome, transcriptome, proteome and phosphoproteome of 145 cases of localized PCa in Chinese patients. Proteome-based stratification of localized PCa revealed three subtypes with distinct molecular features: immune subgroup, arachidonic acid metabolic subgroup and sialic acid metabolic subgroup with highest biochemical recurrence (BCR) rates. Further, we nominated NANS protein, a key enzyme in sialic acid synthesis as a potential prognostic biomarker for aggressive PCa and validated in two independent cohorts. Finally, taking advantage of cell-derived orthotopic transplanted mouse models, single-cell RNA sequencing (scRNA-seq) and immunofluorescence analysis, we revealed that targeting NANS can reverse the immunosuppressive microenvironment through restricting the sialoglycan-sialic acid-recognizing immunoglobulin superfamily lectin (Siglec) axis, thereby inhibiting tumor growth of PCa. In sum, we integrate multi-omic data to refine molecular subtyping of localized PCa, and identify NANS as a potential prognostic biomarker and therapeutic option for aggressive PCa.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.