{"title":"Whether or not to act is determined by distinct signals from motor thalamus and orbitofrontal cortex to secondary motor cortex","authors":"Eriko Yoshida, Masashi Kondo, Ken Nakae, Rie Ako, Shin-ichiro Terada, Natsuki Hatano, Ling Liu, Kenta Kobayashi, Shin Ishii, Masanori Matsuzaki","doi":"10.1038/s41467-025-58272-w","DOIUrl":null,"url":null,"abstract":"<p>“To act or not to act” is a fundamental decision made in daily life. However, it is unknown how the relevant signals are transmitted to the secondary motor cortex (M2), which is the cortical origin of motor initiation. Here, we found that in a decision-making task in male mice, inputs from the thalamus to M2 positively regulated the action while inputs from the lateral part of the orbitofrontal cortex (LO) negatively regulated it. The motor thalamus that received the basal ganglia outputs transmitted action value-related signals to M2 regardless of whether the animal acted or not. By contrast, a large subpopulation of LO inputs showed decreased activity before and during the action, regardless of the action value. These results suggest that M2 integrates the positive signal of the action value from the motor thalamus with the negative action-biased signal from the LO to finally determine whether to act or not.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"73 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58272-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
“To act or not to act” is a fundamental decision made in daily life. However, it is unknown how the relevant signals are transmitted to the secondary motor cortex (M2), which is the cortical origin of motor initiation. Here, we found that in a decision-making task in male mice, inputs from the thalamus to M2 positively regulated the action while inputs from the lateral part of the orbitofrontal cortex (LO) negatively regulated it. The motor thalamus that received the basal ganglia outputs transmitted action value-related signals to M2 regardless of whether the animal acted or not. By contrast, a large subpopulation of LO inputs showed decreased activity before and during the action, regardless of the action value. These results suggest that M2 integrates the positive signal of the action value from the motor thalamus with the negative action-biased signal from the LO to finally determine whether to act or not.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.