Gauge covariant neural network for quarks and gluons

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Yuki Nagai, Akio Tomiya
{"title":"Gauge covariant neural network for quarks and gluons","authors":"Yuki Nagai, Akio Tomiya","doi":"10.1103/physrevd.111.074501","DOIUrl":null,"url":null,"abstract":"We propose gauge covariant neural networks along with a specialized training algorithm for lattice QCD, designed to handle realistic quarks and gluons in four-dimensional space-time. We show that the smearing procedure can be interpreted as an extended version of residual neural networks with fixed parameters. To demonstrate the applicability of our neural networks, we develop a self-learning hybrid Monte Carlo algorithm in the context of two-color QCD, yielding outcomes consistent with those from the conventional hybrid Monte Carlo approach. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"142 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We propose gauge covariant neural networks along with a specialized training algorithm for lattice QCD, designed to handle realistic quarks and gluons in four-dimensional space-time. We show that the smearing procedure can be interpreted as an extended version of residual neural networks with fixed parameters. To demonstrate the applicability of our neural networks, we develop a self-learning hybrid Monte Carlo algorithm in the context of two-color QCD, yielding outcomes consistent with those from the conventional hybrid Monte Carlo approach. Published by the American Physical Society 2025
夸克和胶子的规范协变神经网络
我们提出了规范协变神经网络和晶格QCD的专门训练算法,旨在处理四维时空中的实际夸克和胶子。我们证明了涂抹过程可以被解释为具有固定参数的残差神经网络的扩展版本。为了证明我们的神经网络的适用性,我们在双色QCD环境下开发了一种自学习混合蒙特卡罗算法,其结果与传统混合蒙特卡罗方法的结果一致。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信