A galactolipase activated by high light helps cells acclimate to stress in cyanobacteria

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Nobuyuki Takatani, Makoto Uenosono, Yuya Senoo, Kazutaka Ikeda, Makiko Aichi, Tatsuo Omata
{"title":"A galactolipase activated by high light helps cells acclimate to stress in cyanobacteria","authors":"Nobuyuki Takatani, Makoto Uenosono, Yuya Senoo, Kazutaka Ikeda, Makiko Aichi, Tatsuo Omata","doi":"10.1093/plphys/kiaf130","DOIUrl":null,"url":null,"abstract":"In the cyanobacterium Synechococcus elongatus PCC 7942, high-light (HL) stress activates deacylation of the four major lipid classes in the membrane. To investigate the mechanism and the physiological relevance of the HL-activated lipid deacylation, we searched for lipase genes of S. elongatus by measuring in vitro lipase activity of recombinant proteins expressed in Escherichia coli. Three genes (lipB, lipC, and lipD) were identified as lipase genes out of 14 candidates, and lipB was found to be conserved in most cyanobacteria. His-tagged LipB protein showed acyl-hydrolyzing activity against galactolipids in vitro. In a strain deficient in acyl-acyl carrier protein synthetase and hence defective in the recycling of free fatty acids (FFA), HL-induced accumulation of FFA and lysogalactolipids was reduced by 45% by lipB inactivation, verifying that LipB is a lipase involved in the HL-induced deacylation of galactolipids. Deficiency of lipB in the WT background had no impact on PSII photoinhibition or its subsequent recovery; however, unlike WT cells, ΔlipB cells failed to quickly resume growth when irradiated with strong light (2,000 µmol photons m-2 s-1). The HL sensitivity of growth due to lipB deficiency was more pronounced under nitrogen-limiting conditions. The phenotype was rescued by wild-type LipB expression but not by inactive LipB variant expression. These results suggest that the deacylation of galactolipids by LipB helps cells acclimate to HL conditions by regulating factors other than PSII activity.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"18 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf130","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the cyanobacterium Synechococcus elongatus PCC 7942, high-light (HL) stress activates deacylation of the four major lipid classes in the membrane. To investigate the mechanism and the physiological relevance of the HL-activated lipid deacylation, we searched for lipase genes of S. elongatus by measuring in vitro lipase activity of recombinant proteins expressed in Escherichia coli. Three genes (lipB, lipC, and lipD) were identified as lipase genes out of 14 candidates, and lipB was found to be conserved in most cyanobacteria. His-tagged LipB protein showed acyl-hydrolyzing activity against galactolipids in vitro. In a strain deficient in acyl-acyl carrier protein synthetase and hence defective in the recycling of free fatty acids (FFA), HL-induced accumulation of FFA and lysogalactolipids was reduced by 45% by lipB inactivation, verifying that LipB is a lipase involved in the HL-induced deacylation of galactolipids. Deficiency of lipB in the WT background had no impact on PSII photoinhibition or its subsequent recovery; however, unlike WT cells, ΔlipB cells failed to quickly resume growth when irradiated with strong light (2,000 µmol photons m-2 s-1). The HL sensitivity of growth due to lipB deficiency was more pronounced under nitrogen-limiting conditions. The phenotype was rescued by wild-type LipB expression but not by inactive LipB variant expression. These results suggest that the deacylation of galactolipids by LipB helps cells acclimate to HL conditions by regulating factors other than PSII activity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信