An eRNA transcription checkpoint for diverse signal-dependent enhancer activation programs

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Lishuan Wang, Wei Yuan, Amir Gamliel, Wubin Ma, Seowon Lee, Yuliang Tan, Zeyu Chen, Havilah Taylor, Kenneth Ohgi, Soohwan Oh, Aneel K. Aggarwal, Michael G. Rosenfeld
{"title":"An eRNA transcription checkpoint for diverse signal-dependent enhancer activation programs","authors":"Lishuan Wang, Wei Yuan, Amir Gamliel, Wubin Ma, Seowon Lee, Yuliang Tan, Zeyu Chen, Havilah Taylor, Kenneth Ohgi, Soohwan Oh, Aneel K. Aggarwal, Michael G. Rosenfeld","doi":"10.1038/s41588-025-02138-w","DOIUrl":null,"url":null,"abstract":"<p>The evidence that signal- and ligand-dependent pathways function by activating regulatory enhancer programs suggests that a ‘checkpoint’ strategy may underline activation of many diversely regulated enhancers. Here we report a molecular mechanism common to several acute signal- and ligand-dependent enhancer activation programs based on release of a shared enhancer RNA (eRNA) transcription checkpoint. It requires recruitment of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-phosphorylated RING finger repressor (Krüppel-associated box)-associated protein 1 (KAP1) as a modulator, inhibiting its association with 7SK and E3 small ubiquitin-like modifier (SUMO) ligase activity on the CDK9 subunit of positive transcription elongation factor b (P-TEFb). This facilitates formation of an activated P-TEFb complex, licensing eRNA elongation. Overcoming this checkpoint for signal-dependent enhancer activation occurs in diverse pathways, including estrogen receptor-α, NF-κB-regulated proinflammatory stimulation, androgen receptor and neuronal depolarization. Therefore, a specific strategy required to convert a basal state enhancer P-TEFb complex to an active state to release a conserved checkpoint is apparently employed by several functionally important signal-regulated regulatory enhancers to implement the instructions of the endocrine and paracrine system.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02138-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The evidence that signal- and ligand-dependent pathways function by activating regulatory enhancer programs suggests that a ‘checkpoint’ strategy may underline activation of many diversely regulated enhancers. Here we report a molecular mechanism common to several acute signal- and ligand-dependent enhancer activation programs based on release of a shared enhancer RNA (eRNA) transcription checkpoint. It requires recruitment of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-phosphorylated RING finger repressor (Krüppel-associated box)-associated protein 1 (KAP1) as a modulator, inhibiting its association with 7SK and E3 small ubiquitin-like modifier (SUMO) ligase activity on the CDK9 subunit of positive transcription elongation factor b (P-TEFb). This facilitates formation of an activated P-TEFb complex, licensing eRNA elongation. Overcoming this checkpoint for signal-dependent enhancer activation occurs in diverse pathways, including estrogen receptor-α, NF-κB-regulated proinflammatory stimulation, androgen receptor and neuronal depolarization. Therefore, a specific strategy required to convert a basal state enhancer P-TEFb complex to an active state to release a conserved checkpoint is apparently employed by several functionally important signal-regulated regulatory enhancers to implement the instructions of the endocrine and paracrine system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信