Arslan Akram PhD, Muhammad Arfan Jaffar PhD, Javed Rashid PhD, Salah Mahmoud Boulaaras PhD, Muhammad Faheem PhD
{"title":"CMV2U-Net: A U-shaped network with edge-weighted features for detecting and localizing image splicing","authors":"Arslan Akram PhD, Muhammad Arfan Jaffar PhD, Javed Rashid PhD, Salah Mahmoud Boulaaras PhD, Muhammad Faheem PhD","doi":"10.1111/1556-4029.70033","DOIUrl":null,"url":null,"abstract":"<p>The practice of cutting and pasting portions of one image into another, known as “image splicing,” is commonplace in the field of image manipulation. Image splicing detection using deep learning has been a hot research topic for the past few years. However, there are two problems with the way deep learning is currently implemented: first, it is not good enough for feature fusion, and second, it uses only simple models for feature extraction and encoding, which makes the models vulnerable to overfitting. To tackle these problems, this research proposes CMV2U-Net, an edge-weighted U-shaped network-based image splicing forgery localization approach. An initial step is the development of a feature extraction module that can process two streams of input images simultaneously, allowing for the simultaneous extraction of semantically connected and semantically agnostic features. One characteristic is that a hierarchical fusion approach has been devised to prevent data loss in shallow features that are either semantically related or semantically irrelevant. This approach implements a channel attention mechanism to monitor manipulation trajectories involving multiple levels. Extensive trials on numerous public datasets prove that CMV2U-Net provides high AUC and <i>F</i><sub>1</sub> in localizing tampered regions, outperforming state-of-the-art techniques. Noise, Gaussian blur, and JPEG compression are post-processing threats that CMV2U-Net has successfully resisted.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"70 3","pages":"1026-1043"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.70033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
The practice of cutting and pasting portions of one image into another, known as “image splicing,” is commonplace in the field of image manipulation. Image splicing detection using deep learning has been a hot research topic for the past few years. However, there are two problems with the way deep learning is currently implemented: first, it is not good enough for feature fusion, and second, it uses only simple models for feature extraction and encoding, which makes the models vulnerable to overfitting. To tackle these problems, this research proposes CMV2U-Net, an edge-weighted U-shaped network-based image splicing forgery localization approach. An initial step is the development of a feature extraction module that can process two streams of input images simultaneously, allowing for the simultaneous extraction of semantically connected and semantically agnostic features. One characteristic is that a hierarchical fusion approach has been devised to prevent data loss in shallow features that are either semantically related or semantically irrelevant. This approach implements a channel attention mechanism to monitor manipulation trajectories involving multiple levels. Extensive trials on numerous public datasets prove that CMV2U-Net provides high AUC and F1 in localizing tampered regions, outperforming state-of-the-art techniques. Noise, Gaussian blur, and JPEG compression are post-processing threats that CMV2U-Net has successfully resisted.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.