{"title":"The suspension load deviation control method for high-power locomotives via Harris Hawk optimization.","authors":"Yuqi Xiao, Yongjun Wu","doi":"10.1016/j.isatra.2025.03.023","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the theoretical model for the static secondary spring load adjustment of six-axle railway vehicles is established, which can be applicable to any six-axle railway vehicle, including locomotives, subways, passenger trains and freight trains. Meanwhile, the simplified model of the supporting structure is proposed, which reduces the calculation process greatly by simplifying the 12-points supporting structure of a six-axle railway vehicle into a 4-points supporting structure. Moreover, we present the Harris hawk optimization method in the field of suspension load control of railway vehicles. The load control experiments of a six-axle railway vehicle prove that the performance of this method is significantly improved compared with the classical method in terms of maximum force difference, root mean square error and calculation efficiency. The proposed method reduces the position and amount of padding, further reducing the padding workload and improves the efficiency of the static secondary spring load deviation control.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.03.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the theoretical model for the static secondary spring load adjustment of six-axle railway vehicles is established, which can be applicable to any six-axle railway vehicle, including locomotives, subways, passenger trains and freight trains. Meanwhile, the simplified model of the supporting structure is proposed, which reduces the calculation process greatly by simplifying the 12-points supporting structure of a six-axle railway vehicle into a 4-points supporting structure. Moreover, we present the Harris hawk optimization method in the field of suspension load control of railway vehicles. The load control experiments of a six-axle railway vehicle prove that the performance of this method is significantly improved compared with the classical method in terms of maximum force difference, root mean square error and calculation efficiency. The proposed method reduces the position and amount of padding, further reducing the padding workload and improves the efficiency of the static secondary spring load deviation control.