Yong Wang, Kewen He, Yang Zhang, Yunhao Chen, Shijie Wang, Kunlong Zhao, Zhiguo Liu, Man Hu
{"title":"Peptide-based immuno-PET/CT monitoring of dynamic PD-L1 expression during glioblastoma radiotherapy.","authors":"Yong Wang, Kewen He, Yang Zhang, Yunhao Chen, Shijie Wang, Kunlong Zhao, Zhiguo Liu, Man Hu","doi":"10.1016/j.jpha.2024.101082","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time, noninvasive programmed death-ligand 1 (PD-L1) testing using molecular imaging has enhanced our understanding of the immune environments of neoplasms and has served as a guide for immunotherapy. However, the utilization of radiotracers in the imaging of human brain tumors using positron emission tomography/computed tomography (PET/CT) remains limited. This investigation involved the synthesis of [<sup>18</sup>F]AlF-NOTA-PCP2, which is a novel peptide-based radiolabeled tracer that targets PD-L1, and evaluated its imaging capabilities in orthotopic glioblastoma (GBM) models. Using this tracer, we could noninvasively monitor radiation-induced PD-L1 changes in GBM. [<sup>18</sup>F]AlF-NOTA-PCP2 exhibited high radiochemical purity (>95%) and stability up to 4 h after synthesis. It demonstrated specific, high-affinity binding to PD-L1 <i>in vitro</i> and <i>in vivo</i>, with a dissociation constant of 0.24 nM. PET/CT imaging, integrated with contrast-enhanced magnetic resonance imaging, revealed significant accumulation of [<sup>18</sup>F]AlF-NOTA-PCP2 in orthotopic tumors, correlating with blood-brain barrier disruption. After radiotherapy (15 Gy), [<sup>18</sup>F]AlF-NOTA-PCP2 uptake in tumors increased from 9.51% ± 0.73% to 12.04% ± 1.43%, indicating enhanced PD-L1 expression consistent with immunohistochemistry findings. Fractionated radiation (5 Gy × 3) further amplified PD-L1 upregulation (13.9% ± 1.54% ID/cc) compared with a single dose (11.48% ± 1.05% ID/cc). Taken together, [<sup>18</sup>F]AlF-NOTA-PCP2 may be a valuable tool for noninvasively monitoring PD-L1 expression in brain tumors after radiotherapy.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 3","pages":"101082"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time, noninvasive programmed death-ligand 1 (PD-L1) testing using molecular imaging has enhanced our understanding of the immune environments of neoplasms and has served as a guide for immunotherapy. However, the utilization of radiotracers in the imaging of human brain tumors using positron emission tomography/computed tomography (PET/CT) remains limited. This investigation involved the synthesis of [18F]AlF-NOTA-PCP2, which is a novel peptide-based radiolabeled tracer that targets PD-L1, and evaluated its imaging capabilities in orthotopic glioblastoma (GBM) models. Using this tracer, we could noninvasively monitor radiation-induced PD-L1 changes in GBM. [18F]AlF-NOTA-PCP2 exhibited high radiochemical purity (>95%) and stability up to 4 h after synthesis. It demonstrated specific, high-affinity binding to PD-L1 in vitro and in vivo, with a dissociation constant of 0.24 nM. PET/CT imaging, integrated with contrast-enhanced magnetic resonance imaging, revealed significant accumulation of [18F]AlF-NOTA-PCP2 in orthotopic tumors, correlating with blood-brain barrier disruption. After radiotherapy (15 Gy), [18F]AlF-NOTA-PCP2 uptake in tumors increased from 9.51% ± 0.73% to 12.04% ± 1.43%, indicating enhanced PD-L1 expression consistent with immunohistochemistry findings. Fractionated radiation (5 Gy × 3) further amplified PD-L1 upregulation (13.9% ± 1.54% ID/cc) compared with a single dose (11.48% ± 1.05% ID/cc). Taken together, [18F]AlF-NOTA-PCP2 may be a valuable tool for noninvasively monitoring PD-L1 expression in brain tumors after radiotherapy.