First-in-class inhibitors of SbnA reduce siderophore production in Staphylococcus aureus.

Sarah Hijazi, Monica Cozzi, Somayeh Asgharpour, Omar De Bei, Serena Faggiano, Francesco Marchesani, Luca Ronda, Marialaura Marchetti, Eleonora Gianquinto, Mariacristina Failla, Gauthier Trèves, Loretta Lazzarato, Francesca Spyrakis, Barbara Campanini, Emanuela Frangipani, Stefano Bettati
{"title":"First-in-class inhibitors of SbnA reduce siderophore production in Staphylococcus aureus.","authors":"Sarah Hijazi, Monica Cozzi, Somayeh Asgharpour, Omar De Bei, Serena Faggiano, Francesco Marchesani, Luca Ronda, Marialaura Marchetti, Eleonora Gianquinto, Mariacristina Failla, Gauthier Trèves, Loretta Lazzarato, Francesca Spyrakis, Barbara Campanini, Emanuela Frangipani, Stefano Bettati","doi":"10.1111/febs.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains. Along the seven steps of the SB biosynthetic pathway, N-(2-amino-2-carboxyethyl)-l-glutamate synthase (SbnA) catalyzes the crucial formation of the intermediate N-(2-amino-2-carboxyethyl)-l-glutamate from O-phospho-L-serine and glutamate. Our functional characterization of the enzyme highlighted that citrate inhibits SbnA with an inhibitory constant (K<sub>i</sub>) in the order of magnitude of the physiological concentration of the metabolite. We searched for inhibitors of SbnA within citrate analogues and identified 2-phenylmaleic acid (2-PhMA) as the best hit, with a K<sub>i</sub> of 16 ± 2 μm and a mechanism of inhibition that is competitive with O-phospho-L-serine for active site binding. The methyl ester of 2-PhMA at a 2 mm concentration was effective in inhibiting siderophore biosynthesis in S. aureus. These results pave the way for the discovery of promising inhibitors of iron acquisition that might find application as innovative antimicrobials.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Siderophore production, along with heme scavenging by hemophores, is one of the main mechanisms exploited by bacteria to achieve an adequate iron supply. Staphylococcus aureus produces two main siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), with the latter produced only by the most invasive, coagulase-positive S. aureus strains. Along the seven steps of the SB biosynthetic pathway, N-(2-amino-2-carboxyethyl)-l-glutamate synthase (SbnA) catalyzes the crucial formation of the intermediate N-(2-amino-2-carboxyethyl)-l-glutamate from O-phospho-L-serine and glutamate. Our functional characterization of the enzyme highlighted that citrate inhibits SbnA with an inhibitory constant (Ki) in the order of magnitude of the physiological concentration of the metabolite. We searched for inhibitors of SbnA within citrate analogues and identified 2-phenylmaleic acid (2-PhMA) as the best hit, with a Ki of 16 ± 2 μm and a mechanism of inhibition that is competitive with O-phospho-L-serine for active site binding. The methyl ester of 2-PhMA at a 2 mm concentration was effective in inhibiting siderophore biosynthesis in S. aureus. These results pave the way for the discovery of promising inhibitors of iron acquisition that might find application as innovative antimicrobials.

一流的 SbnA 抑制剂可减少金黄色葡萄球菌嗜苷酸盐的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信