Balancing Security and Privacy: Web Bot Detection, Privacy Challenges, and Regulatory Compliance under the GDPR and AI Act.

Open research Europe Pub Date : 2025-03-24 eCollection Date: 2025-01-01 DOI:10.12688/openreseurope.19347.1
Javier Martínez Llamas, Koen Vranckaert, Davy Preuveneers, Wouter Joosen
{"title":"Balancing Security and Privacy: Web Bot Detection, Privacy Challenges, and Regulatory Compliance under the GDPR and AI Act.","authors":"Javier Martínez Llamas, Koen Vranckaert, Davy Preuveneers, Wouter Joosen","doi":"10.12688/openreseurope.19347.1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a comprehensive analysis of web bot activity, exploring both offensive and defensive perspectives within the context of modern web infrastructure. As bots play a dual role-enabling malicious activities like credential stuffing and scraping while also facilitating benign automation-distinguishing between humans, good bots, and bad bots has become increasingly critical. We examine the technical challenges of detecting web bots amidst large volumes of benign traffic, highlighting the privacy risks involved in monitoring users at scale. Additionally, the study dives into the use of Privacy Enhancing Technologies (PETs) to strike a balance between bot detection and user privacy. These technologies provide innovative approaches to minimising data exposure while maintaining the effectiveness of bot-detection mechanisms. Furthermore, we explore the legal and ethical considerations associated with bot detection, mapping the technical solutions to the regulatory frameworks set forth by the EU General Data Protection Regulation (GDPR) and the Artificial Intelligence Act (AI Act). By analysing these regulatory constraints, we provide insights into how organisations can ensure compliance while maintaining robust bot defence strategies, fostering a responsible approach to cybersecurity in a privacy-conscious world.</p>","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"5 ","pages":"76"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.19347.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive analysis of web bot activity, exploring both offensive and defensive perspectives within the context of modern web infrastructure. As bots play a dual role-enabling malicious activities like credential stuffing and scraping while also facilitating benign automation-distinguishing between humans, good bots, and bad bots has become increasingly critical. We examine the technical challenges of detecting web bots amidst large volumes of benign traffic, highlighting the privacy risks involved in monitoring users at scale. Additionally, the study dives into the use of Privacy Enhancing Technologies (PETs) to strike a balance between bot detection and user privacy. These technologies provide innovative approaches to minimising data exposure while maintaining the effectiveness of bot-detection mechanisms. Furthermore, we explore the legal and ethical considerations associated with bot detection, mapping the technical solutions to the regulatory frameworks set forth by the EU General Data Protection Regulation (GDPR) and the Artificial Intelligence Act (AI Act). By analysing these regulatory constraints, we provide insights into how organisations can ensure compliance while maintaining robust bot defence strategies, fostering a responsible approach to cybersecurity in a privacy-conscious world.

本文对网络僵尸活动进行了全面分析,从现代网络基础设施的角度探讨了攻防两方面的问题。由于机器人扮演着双重角色--既能进行恶意活动(如凭据填充和刮削),又能促进良性自动化,因此区分人类、好机器人和坏机器人变得越来越重要。我们研究了在大量良性流量中检测网络机器人所面临的技术挑战,强调了大规模监控用户所涉及的隐私风险。此外,研究还深入探讨了如何利用隐私增强技术(PET)在僵尸检测和用户隐私之间取得平衡。这些技术提供了创新方法,在保持僵尸检测机制有效性的同时最大限度地减少数据暴露。此外,我们还探讨了与僵尸检测相关的法律和伦理问题,将技术解决方案与《欧盟通用数据保护条例》(GDPR)和《人工智能法》(AI Act)规定的监管框架进行了映射。通过分析这些监管限制,我们深入探讨了企业如何在确保合规的同时保持强大的僵尸防御策略,在一个注重隐私的世界中培养一种负责任的网络安全方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信