The continuous actuation of liquid metal with a 3D-printed electrowetting device.

Med-X Pub Date : 2025-01-01 Epub Date: 2025-04-01 DOI:10.1007/s44258-025-00052-8
Samannoy Ghosh, Rajan Neupane, Dwipak Prasad Sahu, Jian Teng, Yong Lin Kong
{"title":"The continuous actuation of liquid metal with a 3D-printed electrowetting device.","authors":"Samannoy Ghosh, Rajan Neupane, Dwipak Prasad Sahu, Jian Teng, Yong Lin Kong","doi":"10.1007/s44258-025-00052-8","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of liquid metals (LMs) to recover from repeated stretching and deformation is a particularly attractive attribute for soft bioelectronics. In addition to their high electrical and thermal conductivity, LMs can be actuated, potentially enabling highly durable electro-mechanical and microfluidics systems for applications such as cooling, drug delivery, or reconfigurable electronics. In particular, continuous electrowetting (CEW) phenomena can actuate liquid metal at relatively low voltage and affordable power requirements for wearable systems (~ < 10 V, ~ 10 - 100 µW) by inducing a surface tension gradient across the LM. However, sustaining LM actuation remains challenging due to factors such as electrolyte depletion, polarity changes in multi-electrode systems, and limitations related to LM composition. Here, we demonstrate LM actuation in a circular conduit for prolonged durations of at least nine hours. We enabled sustained actuation by sequentially applying short, direct current (DC) pulses through a multi-electrode system based on the dynamics of LM actuation. As a proof of concept, we also demonstrated the ability of LM to transport electrically conducting, non-conducting, and magnetic materials within a microchannel and show the liquid metal actuation system can be potentially miniaturized to the size of a wearable device. We envision that with further miniaturization of the device architectures, our CEW platform can enable future integration of low-voltage electro-mechanical systems into a broad range of wearable form factors.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44258-025-00052-8.</p>","PeriodicalId":74169,"journal":{"name":"Med-X","volume":"3 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med-X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44258-025-00052-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of liquid metals (LMs) to recover from repeated stretching and deformation is a particularly attractive attribute for soft bioelectronics. In addition to their high electrical and thermal conductivity, LMs can be actuated, potentially enabling highly durable electro-mechanical and microfluidics systems for applications such as cooling, drug delivery, or reconfigurable electronics. In particular, continuous electrowetting (CEW) phenomena can actuate liquid metal at relatively low voltage and affordable power requirements for wearable systems (~ < 10 V, ~ 10 - 100 µW) by inducing a surface tension gradient across the LM. However, sustaining LM actuation remains challenging due to factors such as electrolyte depletion, polarity changes in multi-electrode systems, and limitations related to LM composition. Here, we demonstrate LM actuation in a circular conduit for prolonged durations of at least nine hours. We enabled sustained actuation by sequentially applying short, direct current (DC) pulses through a multi-electrode system based on the dynamics of LM actuation. As a proof of concept, we also demonstrated the ability of LM to transport electrically conducting, non-conducting, and magnetic materials within a microchannel and show the liquid metal actuation system can be potentially miniaturized to the size of a wearable device. We envision that with further miniaturization of the device architectures, our CEW platform can enable future integration of low-voltage electro-mechanical systems into a broad range of wearable form factors.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1007/s44258-025-00052-8.

用3d打印的电润湿装置连续驱动液态金属。
液态金属(LMs)能够从反复拉伸和变形中恢复,这对于软生物电子学来说是一个特别有吸引力的特性。除了具有高导电性和导热性之外,液态金属还可以被致动,从而有可能实现高度耐用的电子机械和微流体系统,应用于冷却、药物输送或可重构电子器件等领域。特别是,连续电润湿(CEW)现象能以相对较低的电压和可负担得起的功率要求致动液态金属,适用于可穿戴系统(~ 图表摘要:补充资料:在线版本包含补充材料,可查阅 10.1007/s44258-025-00052-8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信