Jing Zhang, Erika Joana Gutierrez-Lara, Aryanne Do, Lena Nguyen, Anju Nair, Nithya Selvan, Tim Fenn, Eric Adler, Richie Khanna, Farah Sheikh
{"title":"Preclinical efficacy and safety of AAVrh10-based plakophilin-2 gene therapy (LX2020) as a treatment for arrhythmogenic cardiomyopathy.","authors":"Jing Zhang, Erika Joana Gutierrez-Lara, Aryanne Do, Lena Nguyen, Anju Nair, Nithya Selvan, Tim Fenn, Eric Adler, Richie Khanna, Farah Sheikh","doi":"10.1038/s41536-025-00401-6","DOIUrl":null,"url":null,"abstract":"<p><p>Plakophilin-2 (PKP2) mutations cause fatal genetic heart disease and arrhythmogenic cardiomyopathy (ACM) with primary effects on the right ventricle (RV). Adeno-associated virus (AAV)-PKP2 gene therapy shows promise as a therapeutic strategy but lacks long-term data and guidelines on minimal effective doses in animal studies for treating RV deficits, arrhythmia burden, and improving survival when administered during disease settings, which are most relevant to clinical trials. Using AAVrh10, known for its preferential cardiac gene expression at lower doses, we show minimal doses required for efficacy for AAVrh10.PKP2 (LX2020) to rescue cardiac (molecular and especially RV) deficits, arrhythmia burden and survival in PKP2 ACM mice, suggesting its potential to reverse late-stage pathology. Safety assessments in non-human primates revealed no adverse events. These data support LX2020 as a viable treatment for PKP2 ACM patients.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"17"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-025-00401-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Plakophilin-2 (PKP2) mutations cause fatal genetic heart disease and arrhythmogenic cardiomyopathy (ACM) with primary effects on the right ventricle (RV). Adeno-associated virus (AAV)-PKP2 gene therapy shows promise as a therapeutic strategy but lacks long-term data and guidelines on minimal effective doses in animal studies for treating RV deficits, arrhythmia burden, and improving survival when administered during disease settings, which are most relevant to clinical trials. Using AAVrh10, known for its preferential cardiac gene expression at lower doses, we show minimal doses required for efficacy for AAVrh10.PKP2 (LX2020) to rescue cardiac (molecular and especially RV) deficits, arrhythmia burden and survival in PKP2 ACM mice, suggesting its potential to reverse late-stage pathology. Safety assessments in non-human primates revealed no adverse events. These data support LX2020 as a viable treatment for PKP2 ACM patients.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.