Autophagy-related protein Atg11 is essential for microtubule-mediated chromosome segregation.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
Md Hashim Reza, Rashi Aggarwal, Jigyasa Verma, Nitesh Kumar Podh, Ratul Chowdhury, Gunjan Mehta, Ravi Manjithaya, Kaustuv Sanyal
{"title":"Autophagy-related protein Atg11 is essential for microtubule-mediated chromosome segregation.","authors":"Md Hashim Reza, Rashi Aggarwal, Jigyasa Verma, Nitesh Kumar Podh, Ratul Chowdhury, Gunjan Mehta, Ravi Manjithaya, Kaustuv Sanyal","doi":"10.1371/journal.pbio.3003069","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging studies hint at the roles of autophagy-related proteins in various cellular processes. To understand if autophagy-related proteins influence genome stability, we sought to examine a cohort of 35 autophagy mutants in Saccharomyces cerevisiae. We observe cells lacking Atg11 show poor mitotic stability of minichromosomes. Single-molecule tracking assays and live cell microscopy reveal that Atg11 molecules dynamically localize to the spindle pole bodies (SPBs) in a microtubule (MT)-dependent manner. Loss of Atg11 leads to a delayed cell cycle progression. Such cells accumulate at metaphase at an elevated temperature that is relieved when the spindle assembly checkpoint (SAC) is inactivated. Indeed, atg11∆ cells have stabilized securin levels, that prevent anaphase onset. Ipl1-mediated activation of SAC also confirms that atg11∆ mutants are defective in chromosome biorientation. Atg11 functions in the Kar9-dependent spindle positioning pathway. Stabilized Clb4 levels in atg11∆ cells suggest that Atg11 maintains Kar9 asymmetry by facilitating proper dynamic instability of astral microtubules (aMTs). Loss of Spc72 asymmetry contributes to non-random SPB inheritance in atg11∆ cells. Overall, this study uncovers an essential non-canonical role of Atg11 in the MT-mediated process of chromosome segregation.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003069"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003069","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging studies hint at the roles of autophagy-related proteins in various cellular processes. To understand if autophagy-related proteins influence genome stability, we sought to examine a cohort of 35 autophagy mutants in Saccharomyces cerevisiae. We observe cells lacking Atg11 show poor mitotic stability of minichromosomes. Single-molecule tracking assays and live cell microscopy reveal that Atg11 molecules dynamically localize to the spindle pole bodies (SPBs) in a microtubule (MT)-dependent manner. Loss of Atg11 leads to a delayed cell cycle progression. Such cells accumulate at metaphase at an elevated temperature that is relieved when the spindle assembly checkpoint (SAC) is inactivated. Indeed, atg11∆ cells have stabilized securin levels, that prevent anaphase onset. Ipl1-mediated activation of SAC also confirms that atg11∆ mutants are defective in chromosome biorientation. Atg11 functions in the Kar9-dependent spindle positioning pathway. Stabilized Clb4 levels in atg11∆ cells suggest that Atg11 maintains Kar9 asymmetry by facilitating proper dynamic instability of astral microtubules (aMTs). Loss of Spc72 asymmetry contributes to non-random SPB inheritance in atg11∆ cells. Overall, this study uncovers an essential non-canonical role of Atg11 in the MT-mediated process of chromosome segregation.

自噬相关蛋白Atg11对微管介导的染色体分离至关重要。
新近的研究提示了自噬相关蛋白在各种细胞过程中的作用。为了了解自噬相关蛋白是否会影响基因组的稳定性,我们试图研究一组 35 个自噬突变体的酿酒酵母。我们观察到,缺乏 Atg11 的细胞在有丝分裂过程中显示出小染色体稳定性差。单分子跟踪测定和活细胞显微镜显示,Atg11分子以微管(MT)依赖的方式动态定位到纺锤体极体(SPB)。Atg11 的缺失会导致细胞周期进展延迟。这种细胞在分裂期积聚的温度升高,当纺锤体组装检查点(SAC)失活时,积聚的温度就会降低。事实上,atg11∆细胞具有稳定的securin水平,能阻止无丝分裂期的开始。Ipl1介导的SAC激活也证实了atg11∆突变体在染色体生物活化方面存在缺陷。Atg11在依赖于Kar9的纺锤体定位途径中发挥作用。atg11∆细胞中稳定的Clb4水平表明,Atg11通过促进星形微管(aMTs)的适当动态不稳定性来维持Kar9的不对称性。Spc72 不对称的丧失导致了 atg11∆ 细胞中 SPB 的非随机遗传。总之,这项研究揭示了 Atg11 在 MT 介导的染色体分离过程中的重要非规范作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信