Yuxin Liu, Xiang Zhang, Weiwei Cao, Wenju Cui, Tao Tan, Yuqin Peng, Jiayi Huang, Zhen Lei, Jun Shen, Jian Zheng
{"title":"Bootstrapping BI-RADS classification using large language models and transformers in breast magnetic resonance imaging reports.","authors":"Yuxin Liu, Xiang Zhang, Weiwei Cao, Wenju Cui, Tao Tan, Yuqin Peng, Jiayi Huang, Zhen Lei, Jun Shen, Jian Zheng","doi":"10.1186/s42492-025-00189-8","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the most common malignancies among women globally. Magnetic resonance imaging (MRI), as the final non-invasive diagnostic tool before biopsy, provides detailed free-text reports that support clinical decision-making. Therefore, the effective utilization of the information in MRI reports to make reliable decisions is crucial for patient care. This study proposes a novel method for BI-RADS classification using breast MRI reports. Large language models are employed to transform free-text reports into structured reports. Specifically, missing category information (MCI) that is absent in the free-text reports is supplemented by assigning default values to the missing categories in the structured reports. To ensure data privacy, a locally deployed Qwen-Chat model is employed. Furthermore, to enhance the domain-specific adaptability, a knowledge-driven prompt is designed. The Qwen-7B-Chat model is fine-tuned specifically for structuring breast MRI reports. To prevent information loss and enable comprehensive learning of all report details, a fusion strategy is introduced, combining free-text and structured reports to train the classification model. Experimental results show that the proposed BI-RADS classification method outperforms existing report classification methods across multiple evaluation metrics. Furthermore, an external test set from a different hospital is used to validate the robustness of the proposed approach. The proposed structured method surpasses GPT-4o in terms of performance. Ablation experiments confirm that the knowledge-driven prompt, MCI, and the fusion strategy are crucial to the model's performance.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"8 1","pages":"8"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-025-00189-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is one of the most common malignancies among women globally. Magnetic resonance imaging (MRI), as the final non-invasive diagnostic tool before biopsy, provides detailed free-text reports that support clinical decision-making. Therefore, the effective utilization of the information in MRI reports to make reliable decisions is crucial for patient care. This study proposes a novel method for BI-RADS classification using breast MRI reports. Large language models are employed to transform free-text reports into structured reports. Specifically, missing category information (MCI) that is absent in the free-text reports is supplemented by assigning default values to the missing categories in the structured reports. To ensure data privacy, a locally deployed Qwen-Chat model is employed. Furthermore, to enhance the domain-specific adaptability, a knowledge-driven prompt is designed. The Qwen-7B-Chat model is fine-tuned specifically for structuring breast MRI reports. To prevent information loss and enable comprehensive learning of all report details, a fusion strategy is introduced, combining free-text and structured reports to train the classification model. Experimental results show that the proposed BI-RADS classification method outperforms existing report classification methods across multiple evaluation metrics. Furthermore, an external test set from a different hospital is used to validate the robustness of the proposed approach. The proposed structured method surpasses GPT-4o in terms of performance. Ablation experiments confirm that the knowledge-driven prompt, MCI, and the fusion strategy are crucial to the model's performance.