{"title":"Exercise-induced signalling in alleviating neuronal insulin resistance.","authors":"Ishitha Reddy, Chinmoy Sankar Dey","doi":"10.1113/JP287750","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise contributes to a multitude of positive changes within the body and brain with regard to glucose homeostasis, insulin sensitivity, synaptic plasticity, neuroprotection and neurogenesis, among other effects. It provides a non-pharmaceutical alternative for addressing metabolic disorders in individuals with type 2 diabetes, who also face an increased risk of developing Alzheimer's disease. A number of molecules are evoked upon exercise and circulate through the bloodstream, transmitting the wide-reaching advantages of exercise. The ensuing cross-talk has been shown to improve conditions associated with Alzheimer's disease. The vast signalling network mediated by exercise is currently being studied extensively and its implications in improving neuronal insulin resistance, especially as a bypass mechanism, are of major interest. Taking into account sirtuin 1/peroxisome proliferator-activated receptor γ co-activator 1-α, AMP-activated protein kinase, phosphoinositide 3-kinase/AKT, phospholipase C-γ and brain-derived neurotrophic factor/tropomyosin receptor kinase B among many pathways and cross-interactions involved, researching the molecular characteristics of brain exercise signalling and the mechanisms by which it compensates for hampered signalling is crucial for future research.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287750","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exercise contributes to a multitude of positive changes within the body and brain with regard to glucose homeostasis, insulin sensitivity, synaptic plasticity, neuroprotection and neurogenesis, among other effects. It provides a non-pharmaceutical alternative for addressing metabolic disorders in individuals with type 2 diabetes, who also face an increased risk of developing Alzheimer's disease. A number of molecules are evoked upon exercise and circulate through the bloodstream, transmitting the wide-reaching advantages of exercise. The ensuing cross-talk has been shown to improve conditions associated with Alzheimer's disease. The vast signalling network mediated by exercise is currently being studied extensively and its implications in improving neuronal insulin resistance, especially as a bypass mechanism, are of major interest. Taking into account sirtuin 1/peroxisome proliferator-activated receptor γ co-activator 1-α, AMP-activated protein kinase, phosphoinositide 3-kinase/AKT, phospholipase C-γ and brain-derived neurotrophic factor/tropomyosin receptor kinase B among many pathways and cross-interactions involved, researching the molecular characteristics of brain exercise signalling and the mechanisms by which it compensates for hampered signalling is crucial for future research.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.