Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation.

IF 6.4 2区 生物学 Q1 CELL BIOLOGY
Encarnacion Martinez-Salas, Salvador Abellan, Rosario Francisco-Velilla
{"title":"Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation.","authors":"Encarnacion Martinez-Salas, Salvador Abellan, Rosario Francisco-Velilla","doi":"10.1002/wrna.70008","DOIUrl":null,"url":null,"abstract":"<p><p>GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"16 2","pages":"e70008"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.70008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.

理解GEMIN5相互作用:从结构和功能的见解到选择性翻译。
GEMIN5是一种主要的细胞质蛋白,最初被确定为运动神经元存活(SMN)复合体的成员。此外,这种丰富的蛋白质调节rna依赖过程的各个方面,通过形成多组分复合物来执行其功能。GEMIN5中存在的结构域的模块化组织使该蛋白能够通过与不同伙伴的相互作用来执行各种功能。该蛋白通过其n端区域负责识别小核(sn) rna,因此负责snRNP组装。除了在剪接体组装中的作用外,GEMIN5还通过与rna或蛋白质的相互作用调节翻译。在中心区域,一个强大的二聚化结构域作为蛋白质-蛋白质相互作用的枢纽,而一个非规范rna结合位点位于c端。有趣的是,GEMIN5调节mrna分裂成多聚体,可能是由于其rna结合能力和结合天然核糖体的能力。了解蛋白质的功能和结构组织在过去几年中带来了越来越多的兴趣,对人类疾病具有重要意义。携带GEMIN5双等位基因变异的患者会出现神经发育迟缓、张力低下和小脑性共济失调。本文综述了近年来GEMIN5活性在基因表达中的分子机制,以及在发现新功能方面面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信