Genetic structure and geographical distribution of Bithynia siamensis sensu lato from Khong and Mounlapamok districts, Champasak Province, Laos.

IF 3.6 Q1 TROPICAL MEDICINE
Naruemon Bunchom, Weerachai Saijuntha, Virasack Bounavong, Bounmixay Pakouakeu, Parita Hansana, Pheovaly Soundala, Chavanut Jaroenchaiwattanachote, Takeshi Agatsuma, Marcello Otake Sato, Philippe Buchy, Moritoshi Iwagami
{"title":"Genetic structure and geographical distribution of Bithynia siamensis sensu lato from Khong and Mounlapamok districts, Champasak Province, Laos.","authors":"Naruemon Bunchom, Weerachai Saijuntha, Virasack Bounavong, Bounmixay Pakouakeu, Parita Hansana, Pheovaly Soundala, Chavanut Jaroenchaiwattanachote, Takeshi Agatsuma, Marcello Otake Sato, Philippe Buchy, Moritoshi Iwagami","doi":"10.1186/s41182-025-00720-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bithynia spp., a key intermediate host of Opisthorchis viverrini, is widely distributed in the lower Mekong sub-region, where opisthorchiasis remains a major public health concern. Understanding the genetic diversity and population structure of these snails is crucial for disease control. Bithynia siamensis sensu lato has been classified into three genetic lineages (I-III) based on cytochrome c oxidase subunit 1 (cox1) and 16S ribosomal RNA (16S rRNA) sequence analysis. This study focuses on Champasak Province, Laos, a highly endemic area of opisthorchiasis with limited genetic data on Bithynia spp.</p><p><strong>Methods: </strong>Bithynia snails were collected from 12 villages in Khong and Mounlapamok districts, Champasak Province, Laos, between February and August 2024. To compare with previous reports, a total of 246 and 139 samples were analyzed using cox1 and 16S rRNA markers, respectively. Genetic diversity, genetic differentiation, and genetic structure were assessed based on these markers. Haplotype networks were constructed based on cox1 and 16S RNA sequences to elucidate the genetic lineage of these samples.</p><p><strong>Results: </strong>In the present study, only Bithynia siamensis goniomphalos was identified, while B. s. siamensis and B. funiculata were not found. Our findings revealed that both cox1 and 16S rRNA sequences exhibited high haplotype diversity among populations but relatively low nucleotide diversity. Two lineages of B. s. goniomphalos (lineages II and III) were detected in the studied areas, exhibiting significant genetic structuring among groups of snail populations from different villages in each lineage. Notably, lineage II was identified in Laos for the first time. The distribution of lineage II was observed near the southern border of Laos and Cambodia.</p><p><strong>Conclusions: </strong>This study is the first to use DNA analysis to investigate Bithynia spp. in opisthorchiasis-endemic areas of Champasak Province, where B. s. goniomphalos lineages II and III were detected, but lineage I was not found. Our finding suggested that geographic or environmental factors influence the distribution of specific Bithynia lineages in this region. Many O. viverrini endemic areas in Southeast Asia still lack genetic data on Bithynia snails which could provide valuable insights into the transmission dynamics of opisthorchiasis. Therefore, further investigations should be conducted in these areas using cox1 and 16S rRNA sequences for comparison with previous studies.</p>","PeriodicalId":23311,"journal":{"name":"Tropical Medicine and Health","volume":"53 1","pages":"44"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41182-025-00720-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TROPICAL MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bithynia spp., a key intermediate host of Opisthorchis viverrini, is widely distributed in the lower Mekong sub-region, where opisthorchiasis remains a major public health concern. Understanding the genetic diversity and population structure of these snails is crucial for disease control. Bithynia siamensis sensu lato has been classified into three genetic lineages (I-III) based on cytochrome c oxidase subunit 1 (cox1) and 16S ribosomal RNA (16S rRNA) sequence analysis. This study focuses on Champasak Province, Laos, a highly endemic area of opisthorchiasis with limited genetic data on Bithynia spp.

Methods: Bithynia snails were collected from 12 villages in Khong and Mounlapamok districts, Champasak Province, Laos, between February and August 2024. To compare with previous reports, a total of 246 and 139 samples were analyzed using cox1 and 16S rRNA markers, respectively. Genetic diversity, genetic differentiation, and genetic structure were assessed based on these markers. Haplotype networks were constructed based on cox1 and 16S RNA sequences to elucidate the genetic lineage of these samples.

Results: In the present study, only Bithynia siamensis goniomphalos was identified, while B. s. siamensis and B. funiculata were not found. Our findings revealed that both cox1 and 16S rRNA sequences exhibited high haplotype diversity among populations but relatively low nucleotide diversity. Two lineages of B. s. goniomphalos (lineages II and III) were detected in the studied areas, exhibiting significant genetic structuring among groups of snail populations from different villages in each lineage. Notably, lineage II was identified in Laos for the first time. The distribution of lineage II was observed near the southern border of Laos and Cambodia.

Conclusions: This study is the first to use DNA analysis to investigate Bithynia spp. in opisthorchiasis-endemic areas of Champasak Province, where B. s. goniomphalos lineages II and III were detected, but lineage I was not found. Our finding suggested that geographic or environmental factors influence the distribution of specific Bithynia lineages in this region. Many O. viverrini endemic areas in Southeast Asia still lack genetic data on Bithynia snails which could provide valuable insights into the transmission dynamics of opisthorchiasis. Therefore, further investigations should be conducted in these areas using cox1 and 16S rRNA sequences for comparison with previous studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Tropical Medicine and Health
Tropical Medicine and Health TROPICAL MEDICINE-
CiteScore
7.00
自引率
2.20%
发文量
90
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信