Jiayu Li, Dan Hou, Jiarong Li, Rongcai Li, Ming Sun
{"title":"Association between the atherogenic index of plasma and the systemic immuno-inflammatory index using NHANES data from 2005 to 2018.","authors":"Jiayu Li, Dan Hou, Jiarong Li, Rongcai Li, Ming Sun","doi":"10.1038/s41598-025-96090-8","DOIUrl":null,"url":null,"abstract":"<p><p>The atherogenic index of plasma (AIP) is used to evaluate the risk of atherosclerosis, while the systemic immune-inflammation index (SII) measures inflammation. The AIP and SII are indicators used to predict diseases in various areas. This study aims to explore the relationship between AIP and SII. A cross-sectional study design was used to recruit 70,190 participants from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2018, excluding AIP missing data, SII missing data, participants under 20 years of age, and participants with missing covariates to eventually include 8163 participants. We used weighted multiple linear regression analysis, trend test, smooth curve fitting and threshold effect analysis to examine the relationship between AIP and SII. Among the 8163 participants included in the study, the mean (± SD) age was 48.412 ± 16.842 years. The mean SII (± SD) for all participants was 519.910 ± 316.974. In a model adjusted for all covariates (Model 3), AIP showed a significant positive correlation with SII [β (95% CI) 32.497 (5.425, 59.569), P = 0.021]. The smooth curve fitting results of AIP and SII are an \"inverted U-shape\" non-linear relationship, and the inflection point is at AIP = 0.82. This positive association between AIP and SII was found only in females and participants under 50. Specifically, for females, the positive correlation between AIP and SII was linear [β (95% CI) 80.791 (44.625, 116.958); P < 0.001]. In participants under 50, the positive correlation between AIP and SII was [β (95% CI) 34.198 (3.087, 65.310); P = 0.034], and there was also an \"inverted U-shape\" non-linear relationship with an inflection point of AIP = 0.549. For participants aged 20-50 years and males, the smooth curve showed a \"down-flat-down\" non-linear relationship. There is a significant positive correlation between AIP and SII. A positive association between AIP and SII was observed exclusively in females and among participants under 50. Furthermore, AIP and SII demonstrated a nonlinear relationship that resembles an \"inverted U-shape\". These findings offer new insights into the prevention, treatment, and management of cardiovascular disease. However, further comprehensive cohort studies are necessary to validate the relationship between AIP and SII.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11245"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-96090-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The atherogenic index of plasma (AIP) is used to evaluate the risk of atherosclerosis, while the systemic immune-inflammation index (SII) measures inflammation. The AIP and SII are indicators used to predict diseases in various areas. This study aims to explore the relationship between AIP and SII. A cross-sectional study design was used to recruit 70,190 participants from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2018, excluding AIP missing data, SII missing data, participants under 20 years of age, and participants with missing covariates to eventually include 8163 participants. We used weighted multiple linear regression analysis, trend test, smooth curve fitting and threshold effect analysis to examine the relationship between AIP and SII. Among the 8163 participants included in the study, the mean (± SD) age was 48.412 ± 16.842 years. The mean SII (± SD) for all participants was 519.910 ± 316.974. In a model adjusted for all covariates (Model 3), AIP showed a significant positive correlation with SII [β (95% CI) 32.497 (5.425, 59.569), P = 0.021]. The smooth curve fitting results of AIP and SII are an "inverted U-shape" non-linear relationship, and the inflection point is at AIP = 0.82. This positive association between AIP and SII was found only in females and participants under 50. Specifically, for females, the positive correlation between AIP and SII was linear [β (95% CI) 80.791 (44.625, 116.958); P < 0.001]. In participants under 50, the positive correlation between AIP and SII was [β (95% CI) 34.198 (3.087, 65.310); P = 0.034], and there was also an "inverted U-shape" non-linear relationship with an inflection point of AIP = 0.549. For participants aged 20-50 years and males, the smooth curve showed a "down-flat-down" non-linear relationship. There is a significant positive correlation between AIP and SII. A positive association between AIP and SII was observed exclusively in females and among participants under 50. Furthermore, AIP and SII demonstrated a nonlinear relationship that resembles an "inverted U-shape". These findings offer new insights into the prevention, treatment, and management of cardiovascular disease. However, further comprehensive cohort studies are necessary to validate the relationship between AIP and SII.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.