Cucumber green mottle mosaic virus encodes additional small proteins with specific subcellular localizations and virulence function.

IF 8 2区 生物学 Q1 BIOLOGY
Pan Gong, Mengxin Gao, Yalin Chen, Mingzhen Zhang, Yucong Huang, Xiaohua Hu, Siwen Zhao, Hui Zhang, Mengjiao Pan, Buwei Cao, Qingtang Shen, Yong Liu, Rosa Lozano-Durán, Aiming Wang, Xueping Zhou, Fangfang Li
{"title":"Cucumber green mottle mosaic virus encodes additional small proteins with specific subcellular localizations and virulence function.","authors":"Pan Gong, Mengxin Gao, Yalin Chen, Mingzhen Zhang, Yucong Huang, Xiaohua Hu, Siwen Zhao, Hui Zhang, Mengjiao Pan, Buwei Cao, Qingtang Shen, Yong Liu, Rosa Lozano-Durán, Aiming Wang, Xueping Zhou, Fangfang Li","doi":"10.1007/s11427-024-2892-1","DOIUrl":null,"url":null,"abstract":"<p><p>The vast majority of known viruses belong to the positive-sense single-stranded RNA (+ssRNA) class. Tobamoviruses are among the most destructive plant viruses and threaten global food security. It is generally accepted that +ssRNA viruses including tobamoviruses encode proteins solely on their positive strand (+RNA). Here, we identified additional open-reading frames (ORFs) in the negative strand of tobamoviruses, named reverse ORFs (rORFs). Using cucumber green mottle mosaic virus (CGMMV) as a model, we detected the corresponding peptides of rORFs by mass spectrometry analysis and confirmed the translation of rORFs by ribosome profiling. Furthermore, we demonstrated that these rORFs may be translated from an internal ribosome entry site. Mutation of rORF1 and rORF2 significantly reduced the virulence of CGMMV, whereas ectopic expression of rORF1 and rORF2 could rescue the pathogenicity of the mutants. While the rORF2 protein localizes at the cell membrane and in the nucleolus, rORF1 colocalizes with peroxisomes, where it interacts with the viral 126-kD replication protein. Additionally, we screened peroxisomal rORF1-interacting proteins using artificial intelligence tools and found that PEX3 mediated rORF1 targeting to peroxisomes. This study reveals that the tobamoviral proteome is larger than previously thought, and sheds light on peroxisomes as novel virulence targets important for virus infectivity.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2892-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The vast majority of known viruses belong to the positive-sense single-stranded RNA (+ssRNA) class. Tobamoviruses are among the most destructive plant viruses and threaten global food security. It is generally accepted that +ssRNA viruses including tobamoviruses encode proteins solely on their positive strand (+RNA). Here, we identified additional open-reading frames (ORFs) in the negative strand of tobamoviruses, named reverse ORFs (rORFs). Using cucumber green mottle mosaic virus (CGMMV) as a model, we detected the corresponding peptides of rORFs by mass spectrometry analysis and confirmed the translation of rORFs by ribosome profiling. Furthermore, we demonstrated that these rORFs may be translated from an internal ribosome entry site. Mutation of rORF1 and rORF2 significantly reduced the virulence of CGMMV, whereas ectopic expression of rORF1 and rORF2 could rescue the pathogenicity of the mutants. While the rORF2 protein localizes at the cell membrane and in the nucleolus, rORF1 colocalizes with peroxisomes, where it interacts with the viral 126-kD replication protein. Additionally, we screened peroxisomal rORF1-interacting proteins using artificial intelligence tools and found that PEX3 mediated rORF1 targeting to peroxisomes. This study reveals that the tobamoviral proteome is larger than previously thought, and sheds light on peroxisomes as novel virulence targets important for virus infectivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信