Effect of surface inclination and gluteus maximus activation on lumbar lordosis and footpronation in individuals with low back pain with extension pattern: a preliminary study.
Ryan K K Chan, Eric M F Choi, Crystal Y Y Chou, Alvin K Lam, Eliza R Sun, Patrick W H Kwong, Clare C W Yu, Sharon M H Tsang
{"title":"Effect of surface inclination and gluteus maximus activation on lumbar lordosis and footpronation in individuals with low back pain with extension pattern: a preliminary study.","authors":"Ryan K K Chan, Eric M F Choi, Crystal Y Y Chou, Alvin K Lam, Eliza R Sun, Patrick W H Kwong, Clare C W Yu, Sharon M H Tsang","doi":"10.1038/s41598-025-96048-w","DOIUrl":null,"url":null,"abstract":"<p><p>Lumbar hyperlordosis and foot overpronation are associated with low back pain with extension pattern. This study examined if standing and walking on inclined surface or gluteus maximus activation alleviates the extent of lumbar lordosis and foot pronation amongst individuals with LBP who were classified with extension pattern. Eighteen adults with foot overpronation (LBP group, n = 9 and non-LBP group, n = 9) participated in this cross-sectional and case-control comparison study. Lumbar lordotic angle and rearfoot angle were measured using surface tomography, during standing and walking on treadmill at inclinations of 0°, 6° and 9°, and voluntary gluteus maximus activation at 20%, 40% and 60% of maximal contraction in standing at 0° inclination. The lumbar lordosis angle and rearfoot angle were compared within-group and between two groups across the listed trials in standing and walking. Results indicated no significant change in lumbar lordosis or rearfoot angle in LBP group when standing or walking on 6°or 9°inclined surface (p > 0.05). However, voluntary gluteus maximus activation in standing at the level of 20%, 40% and 60% of maximal effort reduced lumbar lordotic angle (p < 0.05) but not rearfoot angle (p > 0.05) in LBP group. Our findings provide a novel approach to address the hyperlordosis in LBP group with extension pattern, for which voluntary gluteus maximus activation of ≥ 20% of maximal effort could effectively reduce the extent of the lumbar lordosis in level-ground standing in the LBP group. Such modified lumbar posture may alleviate the compressive loading on the spine associated with static upright standing at our daily activities. Increased gluteus maximus activation found during inclined walking may be beneficial to those with LBP and extension pattern.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11242"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-96048-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lumbar hyperlordosis and foot overpronation are associated with low back pain with extension pattern. This study examined if standing and walking on inclined surface or gluteus maximus activation alleviates the extent of lumbar lordosis and foot pronation amongst individuals with LBP who were classified with extension pattern. Eighteen adults with foot overpronation (LBP group, n = 9 and non-LBP group, n = 9) participated in this cross-sectional and case-control comparison study. Lumbar lordotic angle and rearfoot angle were measured using surface tomography, during standing and walking on treadmill at inclinations of 0°, 6° and 9°, and voluntary gluteus maximus activation at 20%, 40% and 60% of maximal contraction in standing at 0° inclination. The lumbar lordosis angle and rearfoot angle were compared within-group and between two groups across the listed trials in standing and walking. Results indicated no significant change in lumbar lordosis or rearfoot angle in LBP group when standing or walking on 6°or 9°inclined surface (p > 0.05). However, voluntary gluteus maximus activation in standing at the level of 20%, 40% and 60% of maximal effort reduced lumbar lordotic angle (p < 0.05) but not rearfoot angle (p > 0.05) in LBP group. Our findings provide a novel approach to address the hyperlordosis in LBP group with extension pattern, for which voluntary gluteus maximus activation of ≥ 20% of maximal effort could effectively reduce the extent of the lumbar lordosis in level-ground standing in the LBP group. Such modified lumbar posture may alleviate the compressive loading on the spine associated with static upright standing at our daily activities. Increased gluteus maximus activation found during inclined walking may be beneficial to those with LBP and extension pattern.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.