Mar Ferreira-Guerra, Veredas Coleto-Alcudia, Santiago Mora-García, Ana I Caño-Delgado
{"title":"The Evolutionary Journey of the Sterol Synthesis Pathways in EukaryotesEvolution of sterol synthesis in eukaryotes.","authors":"Mar Ferreira-Guerra, Veredas Coleto-Alcudia, Santiago Mora-García, Ana I Caño-Delgado","doi":"10.1093/pcp/pcaf016","DOIUrl":null,"url":null,"abstract":"<p><p>Sterols play key roles in eukaryotic cell membrane stability and dynamics, as signaling molecules, and as precursors in sterol-based metabolic pathways, including the production of steroid hormones. The sterol biosynthetic pathway, based on a common set of core reactions, has been subject to intense diversification in each major eukaryotic clade. As a result, these organisms display a bewildering panoply of sterol-derived compounds that correlate with their multiple lifestyles and adaptations. In this work, we provide new insights on sterol synthesis evolution and diversification in extant eukaryotes, with a special focus on algae and plants. In particular, we provide detailed information on the sterol synthesis pathway in bryophytes. A comprehensive phylogenetic analysis of bryophyte sterol biosynthetic enzymes suggests that duplications and divergence of the final enzymes of the canonical sterol pathway are taking place in this group.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcaf016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sterols play key roles in eukaryotic cell membrane stability and dynamics, as signaling molecules, and as precursors in sterol-based metabolic pathways, including the production of steroid hormones. The sterol biosynthetic pathway, based on a common set of core reactions, has been subject to intense diversification in each major eukaryotic clade. As a result, these organisms display a bewildering panoply of sterol-derived compounds that correlate with their multiple lifestyles and adaptations. In this work, we provide new insights on sterol synthesis evolution and diversification in extant eukaryotes, with a special focus on algae and plants. In particular, we provide detailed information on the sterol synthesis pathway in bryophytes. A comprehensive phylogenetic analysis of bryophyte sterol biosynthetic enzymes suggests that duplications and divergence of the final enzymes of the canonical sterol pathway are taking place in this group.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.