Enhancing Interstitial Lung Disease Diagnoses Through Multimodal AI Integration of Histopathological and CT Image Data.

IF 6.6 2区 医学 Q1 RESPIRATORY SYSTEM
Respirology Pub Date : 2025-04-02 DOI:10.1111/resp.70036
Kris Lami, Mutsumi Ozasa, Xiangqian Che, Wataru Uegami, Yoshihiro Kato, Yoshiaki Zaizen, Naoko Tsuyama, Ichiro Mori, Shin Ichihara, Han-Seung Yoon, Ryoko Egashira, Kensuke Kataoka, Takeshi Johkoh, Yasuhiro Kondo, Richard Attanoos, Alberto Cavazza, Alberto M Marchevsky, Frank Schneider, Jaroslaw Wojciech Augustyniak, Amna Almutrafi, Alexandre Todorovic Fabro, Luka Brcic, Anja C Roden, Maxwell Smith, Andre Moreira, Junya Fukuoka
{"title":"Enhancing Interstitial Lung Disease Diagnoses Through Multimodal AI Integration of Histopathological and CT Image Data.","authors":"Kris Lami, Mutsumi Ozasa, Xiangqian Che, Wataru Uegami, Yoshihiro Kato, Yoshiaki Zaizen, Naoko Tsuyama, Ichiro Mori, Shin Ichihara, Han-Seung Yoon, Ryoko Egashira, Kensuke Kataoka, Takeshi Johkoh, Yasuhiro Kondo, Richard Attanoos, Alberto Cavazza, Alberto M Marchevsky, Frank Schneider, Jaroslaw Wojciech Augustyniak, Amna Almutrafi, Alexandre Todorovic Fabro, Luka Brcic, Anja C Roden, Maxwell Smith, Andre Moreira, Junya Fukuoka","doi":"10.1111/resp.70036","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The diagnosis of interstitial lung diseases (ILDs) often relies on the integration of various clinical, radiological, and histopathological data. Achieving high diagnostic accuracy in ILDs, particularly for distinguishing usual interstitial pneumonia (UIP), is challenging and requires a multidisciplinary approach. Therefore, this study aimed to develop a multimodal artificial intelligence (AI) algorithm that combines computed tomography (CT) and histopathological images to improve the accuracy and consistency of UIP diagnosis.</p><p><strong>Methods: </strong>A dataset of CT and pathological images from 324 patients with ILD between 2009 and 2021 was collected. The CT component of the model was trained to identify 28 different radiological features. The pathological counterpart was developed in our previous study. A total of 114 samples were selected and used for testing the multimodal AI model. The performance of the multimodal AI was assessed through comparisons with expert pathologists and general pathologists.</p><p><strong>Results: </strong>The developed multimodal AI demonstrated a substantial improvement in distinguishing UIP from non-UIP, achieving an AUC of 0.92. When applied by general pathologists, the diagnostic agreement rate improved significantly, with a post-model κ score of 0.737 compared to 0.273 pre-model integration. Additionally, the diagnostic consensus rate with expert pulmonary pathologists increased from κ scores of 0.278-0.53 to 0.474-0.602 post-model integration. The model also increased diagnostic confidence among general pathologists.</p><p><strong>Conclusion: </strong>Combining CT and histopathological images, the multimodal AI algorithm enhances pathologists' diagnostic accuracy, consistency, and confidence in identifying UIP, even in cases where specialised expertise is limited.</p>","PeriodicalId":21129,"journal":{"name":"Respirology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/resp.70036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: The diagnosis of interstitial lung diseases (ILDs) often relies on the integration of various clinical, radiological, and histopathological data. Achieving high diagnostic accuracy in ILDs, particularly for distinguishing usual interstitial pneumonia (UIP), is challenging and requires a multidisciplinary approach. Therefore, this study aimed to develop a multimodal artificial intelligence (AI) algorithm that combines computed tomography (CT) and histopathological images to improve the accuracy and consistency of UIP diagnosis.

Methods: A dataset of CT and pathological images from 324 patients with ILD between 2009 and 2021 was collected. The CT component of the model was trained to identify 28 different radiological features. The pathological counterpart was developed in our previous study. A total of 114 samples were selected and used for testing the multimodal AI model. The performance of the multimodal AI was assessed through comparisons with expert pathologists and general pathologists.

Results: The developed multimodal AI demonstrated a substantial improvement in distinguishing UIP from non-UIP, achieving an AUC of 0.92. When applied by general pathologists, the diagnostic agreement rate improved significantly, with a post-model κ score of 0.737 compared to 0.273 pre-model integration. Additionally, the diagnostic consensus rate with expert pulmonary pathologists increased from κ scores of 0.278-0.53 to 0.474-0.602 post-model integration. The model also increased diagnostic confidence among general pathologists.

Conclusion: Combining CT and histopathological images, the multimodal AI algorithm enhances pathologists' diagnostic accuracy, consistency, and confidence in identifying UIP, even in cases where specialised expertise is limited.

背景和目的:间质性肺病(ILD)的诊断通常依赖于各种临床、放射学和组织病理学数据的整合。要达到 ILD 诊断的高准确性,尤其是区分寻常间质性肺炎(UIP),是一项具有挑战性的工作,需要采用多学科方法。因此,本研究旨在开发一种结合计算机断层扫描(CT)和组织病理学图像的多模态人工智能(AI)算法,以提高 UIP 诊断的准确性和一致性:收集了2009年至2021年间324名ILD患者的CT和病理图像数据集。对模型的 CT 部分进行了训练,以识别 28 种不同的放射学特征。病理模型是在我们之前的研究中开发的。我们共选择了 114 个样本用于测试多模态人工智能模型。通过与病理专家和普通病理学家的比较,对多模态人工智能的性能进行了评估:结果:所开发的多模态人工智能在区分 UIP 和非 UIP 方面有了很大改进,AUC 达到 0.92。当普通病理学家应用时,诊断一致率显著提高,模型整合后的κ评分为0.737,而模型整合前为0.273。此外,与肺病病理专家的诊断一致率也从模型整合后的κ评分0.278-0.53提高到0.474-0.602。该模型还提高了普通病理学家的诊断信心:多模态人工智能算法结合了 CT 和组织病理学图像,提高了病理学家鉴别 UIP 的诊断准确性、一致性和信心,即使在专业知识有限的情况下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Respirology
Respirology 医学-呼吸系统
CiteScore
10.60
自引率
5.80%
发文量
225
审稿时长
1 months
期刊介绍: Respirology is a journal of international standing, publishing peer-reviewed articles of scientific excellence in clinical and clinically-relevant experimental respiratory biology and disease. Fields of research include immunology, intensive and critical care, epidemiology, cell and molecular biology, pathology, pharmacology, physiology, paediatric respiratory medicine, clinical trials, interventional pulmonology and thoracic surgery. The Journal aims to encourage the international exchange of results and publishes papers in the following categories: Original Articles, Editorials, Reviews, and Correspondences. Respirology is the preferred journal of the Thoracic Society of Australia and New Zealand, has been adopted as the preferred English journal of the Japanese Respiratory Society and the Taiwan Society of Pulmonary and Critical Care Medicine and is an official journal of the World Association for Bronchology and Interventional Pulmonology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信