Jorunnamycin A induces apoptosis in pancreatic ductal adenocarcinoma cells, spheroids, and patient-derived organoids by modulating KRAS-mediated survival pathways.
Hnin Ei Ei Khine, Utid Suriya, Thanyada Rungrotmongkol, Supakarn Chamni, Yanxi Lu, Alan Bénard, Bin Lan, Debabrata Mukhopadhyay, David Chang, Andrew Biankin, Regine Schneider-Stock, Robert Grützmann, Rungroch Sungthong, Christian Pilarsky, Chatchai Chaotham
{"title":"Jorunnamycin A induces apoptosis in pancreatic ductal adenocarcinoma cells, spheroids, and patient-derived organoids by modulating KRAS-mediated survival pathways.","authors":"Hnin Ei Ei Khine, Utid Suriya, Thanyada Rungrotmongkol, Supakarn Chamni, Yanxi Lu, Alan Bénard, Bin Lan, Debabrata Mukhopadhyay, David Chang, Andrew Biankin, Regine Schneider-Stock, Robert Grützmann, Rungroch Sungthong, Christian Pilarsky, Chatchai Chaotham","doi":"10.1038/s41598-025-95766-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis, frequently driven by oncogenic KRAS mutations. Among these, KRAS G12D is the most prevalent, contributing to chemoresistance and limiting the efficacy of current therapeutic strategies. This study investigates the therapeutic potential of jorunnamycin A (JA), a bioactive compound derived from the marine sponge Xestospongia, in PDAC. Molecular docking analyses were performed to assess JA's binding affinity for various KRAS protein variants. The synergistic effects of JA in combination with standard chemotherapeutic agents were evaluated using the Bliss independence model in pancreatic cancer cell lines and patient-derived PDAC organoids harboring distinct KRAS mutations. Furthermore, western blot analysis was performed to examine the impact the molecular mechanisms underlying JA's anticancer activity. JA demonstrated potent anticancer activity against PDAC cells, irrespective of their KRAS mutation status. In silico molecular docking and protein suppression studies indicated a strong binding affinity between JA and KRAS G12D. Synergistic interactions between JA and various PDAC chemotherapeutic agents, including oxaliplatin, SN-38, paclitaxel, 5-fluorouracil, and gemcitabine, were observed using the Bliss independence model. Notably, co-treatment with JA at a 10-fold lower concentration significantly enhanced the cytotoxicity of oxaliplatin, reducing its IC<sub>50</sub> values around tenfold. This synergistic impact was further validated in both KRAS G12D spheroids and patient-derived PDAC organoids harboring KRAS G12D and other KRAS variants. Mechanistically, the JA-oxaliplatin combination enhanced caspase-3/7 activation, suppressed key KRAS-mediated survival pathways (STAT3, B/C-RAF, AKT, and ERK), and led to the downregulation of anti-apoptotic proteins (MCL-1 and BCL-2). These findings highlight JA as a promising therapeutic candidate for PDAC, particularly in the context of KRAS G12D-driven tumors. Further investigations into its pharmacokinetics and clinical feasibility are warranted to explore its full potential in PDAC treatment.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11376"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95766-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis, frequently driven by oncogenic KRAS mutations. Among these, KRAS G12D is the most prevalent, contributing to chemoresistance and limiting the efficacy of current therapeutic strategies. This study investigates the therapeutic potential of jorunnamycin A (JA), a bioactive compound derived from the marine sponge Xestospongia, in PDAC. Molecular docking analyses were performed to assess JA's binding affinity for various KRAS protein variants. The synergistic effects of JA in combination with standard chemotherapeutic agents were evaluated using the Bliss independence model in pancreatic cancer cell lines and patient-derived PDAC organoids harboring distinct KRAS mutations. Furthermore, western blot analysis was performed to examine the impact the molecular mechanisms underlying JA's anticancer activity. JA demonstrated potent anticancer activity against PDAC cells, irrespective of their KRAS mutation status. In silico molecular docking and protein suppression studies indicated a strong binding affinity between JA and KRAS G12D. Synergistic interactions between JA and various PDAC chemotherapeutic agents, including oxaliplatin, SN-38, paclitaxel, 5-fluorouracil, and gemcitabine, were observed using the Bliss independence model. Notably, co-treatment with JA at a 10-fold lower concentration significantly enhanced the cytotoxicity of oxaliplatin, reducing its IC50 values around tenfold. This synergistic impact was further validated in both KRAS G12D spheroids and patient-derived PDAC organoids harboring KRAS G12D and other KRAS variants. Mechanistically, the JA-oxaliplatin combination enhanced caspase-3/7 activation, suppressed key KRAS-mediated survival pathways (STAT3, B/C-RAF, AKT, and ERK), and led to the downregulation of anti-apoptotic proteins (MCL-1 and BCL-2). These findings highlight JA as a promising therapeutic candidate for PDAC, particularly in the context of KRAS G12D-driven tumors. Further investigations into its pharmacokinetics and clinical feasibility are warranted to explore its full potential in PDAC treatment.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.