Ectopic expression of BpbHLH9 suggested the presence of a self-activating loop mechanism of clade Ia bHLHs to enhance betulinic acid biosynthesis in Lotus japonicus hairy roots.

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hayato Suzuki, Shigeo S Sugano, Toshiya Muranaka, Hikaru Seki
{"title":"Ectopic expression of BpbHLH9 suggested the presence of a self-activating loop mechanism of clade Ia bHLHs to enhance betulinic acid biosynthesis in <i>Lotus japonicus</i> hairy roots.","authors":"Hayato Suzuki, Shigeo S Sugano, Toshiya Muranaka, Hikaru Seki","doi":"10.5511/plantbiotechnology.24.0717b","DOIUrl":null,"url":null,"abstract":"<p><p>For the optimal production of specialized (secondary) metabolites in plant hosts, a comprehensive understanding of their regulatory mechanisms is imperative. Bioactive C-28-oxidized triterpenes, such as oleanolic, ursolic, and betulinic acids, are metabolites ubiquitously found across the plant kingdom; however the precise regulatory mechanisms governing their biosynthesis remain elusive. Previously, we demonstrated that the clade Ia bHLH transcription factor, LjbHLH50, plays a pivotal role in the upregulation of betulinic acid biosynthesis in <i>Lotus japonicus</i>. However, inconsistent outcomes have been observed in transient effector-reporter assays, which are commonly employed in transcription factor studies. Thus, in the present study, we sought to further characterize LjbHLH50 by examining the ectopic expression of <i>BpbHLH9</i>, a homolog of <i>LjbHLH50</i> in <i>Betula platyphylla</i>, in <i>L. japonicus</i> hairy roots. Remarkably, <i>BpbHLH9</i> expression elicited metabolic and transcriptomic alterations almost similar to those induced by <i>LjbHLH50</i> overexpression, highlighting the conserved function of clade Ia bHLHs. Through RNA-sequencing analysis, we found that <i>LjbHLH50</i> was upregulated by ectopic BpbHLH9 expression, implying the existence of a self-activating loop in clade Ia bHLHs that facilitates enhanced betulinic acid biosynthesis. Notably, among the clade Ia bHLHs homologous to <i>BpbHLH9</i>, <i>LjbHLH50</i> and two <i>LjbHLH50</i> paralogs were upregulated upon BpbHLH9 induction, underscoring the central role of these clade Ia bHLHs in betulinic acid biosynthesis regulatory networks in <i>L. japonicus</i> hairy roots.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 3","pages":"319-323"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0717b","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For the optimal production of specialized (secondary) metabolites in plant hosts, a comprehensive understanding of their regulatory mechanisms is imperative. Bioactive C-28-oxidized triterpenes, such as oleanolic, ursolic, and betulinic acids, are metabolites ubiquitously found across the plant kingdom; however the precise regulatory mechanisms governing their biosynthesis remain elusive. Previously, we demonstrated that the clade Ia bHLH transcription factor, LjbHLH50, plays a pivotal role in the upregulation of betulinic acid biosynthesis in Lotus japonicus. However, inconsistent outcomes have been observed in transient effector-reporter assays, which are commonly employed in transcription factor studies. Thus, in the present study, we sought to further characterize LjbHLH50 by examining the ectopic expression of BpbHLH9, a homolog of LjbHLH50 in Betula platyphylla, in L. japonicus hairy roots. Remarkably, BpbHLH9 expression elicited metabolic and transcriptomic alterations almost similar to those induced by LjbHLH50 overexpression, highlighting the conserved function of clade Ia bHLHs. Through RNA-sequencing analysis, we found that LjbHLH50 was upregulated by ectopic BpbHLH9 expression, implying the existence of a self-activating loop in clade Ia bHLHs that facilitates enhanced betulinic acid biosynthesis. Notably, among the clade Ia bHLHs homologous to BpbHLH9, LjbHLH50 and two LjbHLH50 paralogs were upregulated upon BpbHLH9 induction, underscoring the central role of these clade Ia bHLHs in betulinic acid biosynthesis regulatory networks in L. japonicus hairy roots.

bphbhlh9的异位表达提示Ia支系bHLHs存在自激活环机制,促进白桦酸在日本莲毛状根中的生物合成。
为了在植物宿主中产生最佳的专门(次生)代谢物,全面了解它们的调节机制是必要的。生物活性的c -28氧化三萜,如齐墩果酸、熊果酸和白桦酸,是植物界普遍存在的代谢物;然而,控制其生物合成的精确调节机制仍然难以捉摸。在此之前,我们证实了Ia支bHLH转录因子LjbHLH50在上调白桦酸的生物合成中起关键作用。然而,在转录因子研究中常用的瞬时效应报告试验中观察到不一致的结果。因此,在本研究中,我们试图通过检测白桦LjbHLH50的同源物bphbhlh9在白桦毛状根中的异位表达来进一步表征LjbHLH50。值得注意的是,bphbhlh9表达引起的代谢和转录组改变与LjbHLH50过表达引起的代谢和转录组改变几乎相似,这突出了Ia支系bHLHs的保守功能。通过rna测序分析,我们发现LjbHLH50因异位表达bphbhlh9而上调,这意味着Ia支系bHLHs中存在一个自激活环,促进了白桦酸的生物合成。值得注意的是,在与BpbHLH9同源的Ia支系bHLHs中,LjbHLH50和两个LjbHLH50的类似物在BpbHLH9诱导下被上调,这表明Ia支系bHLHs在白桦毛状根中白桦酸生物合成调控网络中起着核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信