{"title":"Leveraging machine learning for prediction and optimization of texture properties of sustainable activated carbon derived from waste materials.","authors":"Ahmed Farid Ibrahim, Mohamed Abdrabou Hussein","doi":"10.1038/s41598-025-95061-3","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for sustainable waste management has driven innovation in the production of activated carbon (AC) from waste. AC's textural properties, including its surface area (SA), total pore volume (TPV), and micropore volume (MPV), are critical for applications such as gas purification and wastewater treatment. However, the traditional assessment methods are expensive and complex. This study employed machine learning (ML) models to predict AC's properties and optimize its production process. Random Forest (RF), Decision Tree (DT), Gradient Boosting Regressor (GBR), support vector machines (SVM), and Artificial Neural Networks (ANN) were applied along with key input parameters, including raw material type, particle size, and activation conditions. A genetic algorithm (GA) integrated with the GBR model optimizes the synthesis process. The ML models, particularly RF and GBR, accurately predicted SA with R<sup>2</sup> values exceeding 0.96. In contrast, the linear regression models were inadequate, with R<sup>2</sup> values below 0.6, emphasizing the non-linear relationship between the inputs and outputs. Sensitivity analysis showed that the activation temperature, ratio of the activating agent to carbon, and particle size significantly affected the AC properties. Optimal properties were achieved under activation temperatures between 800 and 900 °C and activating-agent to the carbon ratio 3.8. This approach provides a scalable solution for enhancing AC production sustainability, while addressing critical waste management challenges.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11313"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95061-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for sustainable waste management has driven innovation in the production of activated carbon (AC) from waste. AC's textural properties, including its surface area (SA), total pore volume (TPV), and micropore volume (MPV), are critical for applications such as gas purification and wastewater treatment. However, the traditional assessment methods are expensive and complex. This study employed machine learning (ML) models to predict AC's properties and optimize its production process. Random Forest (RF), Decision Tree (DT), Gradient Boosting Regressor (GBR), support vector machines (SVM), and Artificial Neural Networks (ANN) were applied along with key input parameters, including raw material type, particle size, and activation conditions. A genetic algorithm (GA) integrated with the GBR model optimizes the synthesis process. The ML models, particularly RF and GBR, accurately predicted SA with R2 values exceeding 0.96. In contrast, the linear regression models were inadequate, with R2 values below 0.6, emphasizing the non-linear relationship between the inputs and outputs. Sensitivity analysis showed that the activation temperature, ratio of the activating agent to carbon, and particle size significantly affected the AC properties. Optimal properties were achieved under activation temperatures between 800 and 900 °C and activating-agent to the carbon ratio 3.8. This approach provides a scalable solution for enhancing AC production sustainability, while addressing critical waste management challenges.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.