A large-scale gene co-expression network analysis reveals Glutamate Dehydrogenase 2 (GhGDH2_D03) as a hub regulator of salt and salt-alkali tolerance in cotton.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rui Hao, Zhan Gao, Xianliang Zhang, Xingxing Wang, Wuwei Ye, Xiugui Chen, Xiongfeng Ma, Xianpeng Xiong, Guanjing Hu
{"title":"A large-scale gene co-expression network analysis reveals Glutamate Dehydrogenase 2 (GhGDH2_D03) as a hub regulator of salt and salt-alkali tolerance in cotton.","authors":"Rui Hao, Zhan Gao, Xianliang Zhang, Xingxing Wang, Wuwei Ye, Xiugui Chen, Xiongfeng Ma, Xianpeng Xiong, Guanjing Hu","doi":"10.1007/s11103-025-01586-6","DOIUrl":null,"url":null,"abstract":"<p><p>Salt stress and salt-alkali stress significantly inhibit the normal growth and development of plants. Understanding the molecular mechanisms of cotton responses to these stresses is crucial for improve yield and fiber quality. In this study, we conducted a comprehensive analysis of the transcriptome dynamics under salt and salt-alkali stress conditions, utilizing 234 RNA-seq datasets compiled from 11 previous studies. After systematic evaluation and correction for batch effects, we observed that root transcriptomes clustered more consistently than leaf transcriptomes across stress treatment and time points. Weighted gene co-expression network analysis (WGCNA) on 123 root transcriptomes identified three key modules, with their hub genes significantly associated with salt and salt-alkali tolerance. Virus-induced gene silencing assay and RNA-seq analysis indicated that GhGDH2_D03 (Gohir.D03G104800), a module hub gene encoding Glutamate Dehydrogenase 2, positively regulates salt and salt-alkali tolerance in cotton by modulating multiple signaling pathways and metabolic processes, including the ethylene signaling pathway. This study underscores the pivotal role of GhGDH2_D03 in conferring tolerance to salt and salt-alkali stress, in addition to its previous reported involvement in biotic stress defense, providing valuable insights and genetic resources for cotton breeding.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"54"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01586-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salt stress and salt-alkali stress significantly inhibit the normal growth and development of plants. Understanding the molecular mechanisms of cotton responses to these stresses is crucial for improve yield and fiber quality. In this study, we conducted a comprehensive analysis of the transcriptome dynamics under salt and salt-alkali stress conditions, utilizing 234 RNA-seq datasets compiled from 11 previous studies. After systematic evaluation and correction for batch effects, we observed that root transcriptomes clustered more consistently than leaf transcriptomes across stress treatment and time points. Weighted gene co-expression network analysis (WGCNA) on 123 root transcriptomes identified three key modules, with their hub genes significantly associated with salt and salt-alkali tolerance. Virus-induced gene silencing assay and RNA-seq analysis indicated that GhGDH2_D03 (Gohir.D03G104800), a module hub gene encoding Glutamate Dehydrogenase 2, positively regulates salt and salt-alkali tolerance in cotton by modulating multiple signaling pathways and metabolic processes, including the ethylene signaling pathway. This study underscores the pivotal role of GhGDH2_D03 in conferring tolerance to salt and salt-alkali stress, in addition to its previous reported involvement in biotic stress defense, providing valuable insights and genetic resources for cotton breeding.

大规模基因共表达网络分析表明,谷氨酸脱氢酶2 (GhGDH2_D03)是棉花耐盐性和盐碱性的枢纽调节因子。
盐胁迫和盐碱胁迫显著抑制植物的正常生长发育。了解棉花对这些胁迫反应的分子机制对提高产量和纤维品质至关重要。在这项研究中,我们利用来自11项先前研究的234个RNA-seq数据集,对盐和盐碱胁迫条件下的转录组动力学进行了全面分析。在对批效应进行系统评估和校正后,我们观察到,在不同的胁迫处理和时间点,根转录组的聚集性比叶转录组更一致。对123个根转录组进行加权基因共表达网络分析(WGCNA),鉴定出3个关键模块,其中心基因与盐和盐碱耐受性显著相关。病毒诱导的基因沉默实验和RNA-seq分析表明,编码谷氨酸脱氢酶2的模块枢纽基因GhGDH2_D03 (Gohir.D03G104800)通过调控包括乙烯信号通路在内的多种信号通路和代谢过程,正向调节棉花的盐和盐碱耐受性。本研究强调了GhGDH2_D03在棉花耐盐和盐碱胁迫中的关键作用,以及其在生物胁迫防御中的作用,为棉花育种提供了有价值的见解和遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信