Luuk Hilkens, Melissa S A M Bevers, Caroline E Wyers, Luc J C van Loon, Joop P van den Bergh, Jan-Willem van Dijk
{"title":"Bone Health of Female Elite Cyclists Is Characterized by Impaired Cortical and Trabecular Microarchitecture.","authors":"Luuk Hilkens, Melissa S A M Bevers, Caroline E Wyers, Luc J C van Loon, Joop P van den Bergh, Jan-Willem van Dijk","doi":"10.1249/MSS.0000000000003718","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Many elite road-race cyclists have low areal bone mineral density (aBMD) as previously shown by dual-energy X-ray absorptiometry (DXA). However, aBMD provides limited insight into bone quality. Therefore, this cross-sectional study aimed to assess volumetric BMD (vBMD), bone microarchitecture, and bone strength in elite road-race cyclists using high-resolution peripheral computed tomography (HR-pQCT), along with aBMD measured by DXA.</p><p><strong>Methods: </strong>Twenty female elite (Tier 3/ 4) road-race cyclists (21 ± 2 y; BMI 20.8 ± 1.6 kg/m2) had DXA scans at the hip, lumbar spine, and total body to assess aBMD, and HR-pQCT scans at the distal radius and tibia to assess vBMD, bone microarchitecture, and failure load. Z-scores were calculated for all outcomes, with Z-scores <-1 considered as low or impaired. The risk of low energy availability was assessed using the Low Energy Availability in Females Questionnaire (LEAF-Q).</p><p><strong>Results: </strong>Low aBMD was observed in 20%, 25%, 35%, and 10% of the participants at the hip, femoral neck, lumbar spine, and total body, respectively. Low total vBMD was present in 45% and 40% at the distal radius and tibia, respectively. With regard to bone microarchitecture, the tibial cortical area and tibial cortical thickness were low in 40% and 60% of the participants, respectively, and number and thickness of trabeculae at the tibia were low in 40% and 30% of the participants. The impairments were less pronounced at the distal radius. Failure load was low in 15% (radius) and 20% (tibia) of the participants.</p><p><strong>Conclusions: </strong>Along with low aBMD, a substantial proportion of female elite cyclists had impaired bone microarchitecture, mainly characterized by a low cortical area and thickness and low trabecular number and thickness, especially at the distal tibia.</p>","PeriodicalId":18426,"journal":{"name":"Medicine and Science in Sports and Exercise","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and Science in Sports and Exercise","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1249/MSS.0000000000003718","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Many elite road-race cyclists have low areal bone mineral density (aBMD) as previously shown by dual-energy X-ray absorptiometry (DXA). However, aBMD provides limited insight into bone quality. Therefore, this cross-sectional study aimed to assess volumetric BMD (vBMD), bone microarchitecture, and bone strength in elite road-race cyclists using high-resolution peripheral computed tomography (HR-pQCT), along with aBMD measured by DXA.
Methods: Twenty female elite (Tier 3/ 4) road-race cyclists (21 ± 2 y; BMI 20.8 ± 1.6 kg/m2) had DXA scans at the hip, lumbar spine, and total body to assess aBMD, and HR-pQCT scans at the distal radius and tibia to assess vBMD, bone microarchitecture, and failure load. Z-scores were calculated for all outcomes, with Z-scores <-1 considered as low or impaired. The risk of low energy availability was assessed using the Low Energy Availability in Females Questionnaire (LEAF-Q).
Results: Low aBMD was observed in 20%, 25%, 35%, and 10% of the participants at the hip, femoral neck, lumbar spine, and total body, respectively. Low total vBMD was present in 45% and 40% at the distal radius and tibia, respectively. With regard to bone microarchitecture, the tibial cortical area and tibial cortical thickness were low in 40% and 60% of the participants, respectively, and number and thickness of trabeculae at the tibia were low in 40% and 30% of the participants. The impairments were less pronounced at the distal radius. Failure load was low in 15% (radius) and 20% (tibia) of the participants.
Conclusions: Along with low aBMD, a substantial proportion of female elite cyclists had impaired bone microarchitecture, mainly characterized by a low cortical area and thickness and low trabecular number and thickness, especially at the distal tibia.
期刊介绍:
Medicine & Science in Sports & Exercise® features original investigations, clinical studies, and comprehensive reviews on current topics in sports medicine and exercise science. With this leading multidisciplinary journal, exercise physiologists, physiatrists, physical therapists, team physicians, and athletic trainers get a vital exchange of information from basic and applied science, medicine, education, and allied health fields.