Electrical properties based B 1 + prediction for electrical properties tomography reconstruction evaluation.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Thierry G Meerbothe, Kyu-Jin Jung, Chuanjiang Cui, Dong-Hyun Kim, Cornelis A T van den Berg, Stefano Mandija
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Electrical properties based <ns0:math> <ns0:mrow><ns0:msubsup><ns0:mi>B</ns0:mi> <ns0:mn>1</ns0:mn> <ns0:mo>+</ns0:mo></ns0:msubsup> </ns0:mrow> </ns0:math> prediction for electrical properties tomography reconstruction evaluation.","authors":"Thierry G Meerbothe, Kyu-Jin Jung, Chuanjiang Cui, Dong-Hyun Kim, Cornelis A T van den Berg, Stefano Mandija","doi":"10.1002/mrm.30520","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics-based <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> estimation model.</p><p><strong>Methods: </strong>A physics-based method using a finite difference based recurrent relation is used to estimate the <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field from a set of given EPs and the boundary of the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field. Reconstructed EPs can be evaluated by comparing the estimated <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field with the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo.</p><p><strong>Results: </strong>The simulation experiments show that the <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field can be accurately estimated, within 90 s for a typical brain at 1 mm<sup>3</sup> isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields shows differences with the measured <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice.</p><p><strong>Conclusion: </strong>With the proposed method, <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30520","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: In MR electrical properties tomography (EPT), conductivity and permittivity are reconstructed from MR measurements. However, depending on the reconstruction method, reconstructed electrical properties (EPs) show large variability in vivo, reducing confidence in the reconstructed values for clinical application in practice. To overcome this problem we present a method to evaluate the reconstructed EPs using a physics-based B 1 + $$ {\mathrm{B}}_1^{+} $$ estimation model.

Methods: A physics-based method using a finite difference based recurrent relation is used to estimate the B 1 + $$ {\mathrm{B}}_1^{+} $$ field from a set of given EPs and the boundary of the measured B 1 + $$ {\mathrm{B}}_1^{+} $$ field. Reconstructed EPs can be evaluated by comparing the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ field with the measured B 1 + $$ {\mathrm{B}}_1^{+} $$ field. The method was first validated in simulations and afterward tested using MRI data from phantoms and in vivo.

Results: The simulation experiments show that the B 1 + $$ {\mathrm{B}}_1^{+} $$ field can be accurately estimated, within 90 s for a typical brain at 1 mm3 isotropic resolution, when correct EPs are used as input. When incorrect EPs are used as input the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ fields shows differences with the measured B 1 + $$ {\mathrm{B}}_1^{+} $$ fields. These differences directly correspond to the errors in the underlying EPs, enabling detection of errors in the reconstructions. The results obtained in MRI experiments using phantoms and in vivo show the applicability of the method in practice.

Conclusion: With the proposed method, B 1 + $$ {\mathrm{B}}_1^{+} $$ fields can be accurately estimated from EPs. This approach can be used to evaluate EPT reconstructions and consequently gain more confidence in reconstructed EPs values in vivo.

基于 B 1 + 预测的电特性层析成像重建评估。
目的:在磁共振电性质断层扫描(EPT)中,利用磁共振测量数据重建电导率和介电常数。然而,根据重建方法的不同,重建的电学性质(EPs)在体内表现出很大的变异性,这降低了对临床应用重建值的信心。为了克服这一问题,我们提出了一种使用基于物理的b1 + $$ {\mathrm{B}}_1^{+} $$估计模型来评估重建EPs的方法。方法:利用基于有限差分的递归关系的基于物理的方法,从一组给定的EPs和测量的b1 + $$ {\mathrm{B}}_1^{+} $$场的边界估计b1 + $$ {\mathrm{B}}_1^{+} $$场。通过将估计的b1 + $$ {\mathrm{B}}_1^{+} $$油田与实测的b1 + $$ {\mathrm{B}}_1^{+} $$油田进行比较,可以评价重建的EPs。该方法首先在模拟中得到验证,然后使用来自幻影和活体的MRI数据进行测试。结果:仿真实验表明,在1 mm3各向同性分辨率下,当使用正确的EPs作为输入时,可以在90 s内准确估计出典型脑b1 + $$ {\mathrm{B}}_1^{+} $$场。当使用不正确的EPs作为输入时,估计的b1 + $$ {\mathrm{B}}_1^{+} $$字段显示与测量的b1 + $$ {\mathrm{B}}_1^{+} $$字段的差异。这些差异直接对应于底层EPs中的错误,从而能够检测重构中的错误。通过模型和活体MRI实验,验证了该方法在实际应用中的适用性。结论:利用该方法可以准确地从EPs中估计b1 + $$ {\mathrm{B}}_1^{+} $$场。该方法可用于评估EPT重建,从而对体内重建的EPs值获得更大的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信