Weiqi Zhang, Marc Planas-Marquès, Moyan Liang, Qingshan Zhang, Annemarie Vermeulen, Farnusch Kaschani, Markus Kaiser, Frank L W Takken, Nuria S Coll, Marc Valls
{"title":"The CAPE1 peptide confers resistance against bacterial wilt in tomato.","authors":"Weiqi Zhang, Marc Planas-Marquès, Moyan Liang, Qingshan Zhang, Annemarie Vermeulen, Farnusch Kaschani, Markus Kaiser, Frank L W Takken, Nuria S Coll, Marc Valls","doi":"10.1093/jxb/eraf145","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial diseases for which no effective treatment exists. There is an urgent need to understand the basis of resistance against this pathogen in order to engineer efficient strategies in the field. We previously demonstrated that resistant tomato plants limit bacterial movement in the apoplast and the xylem. As a first step to dissect the underlying mechanisms, we analysed the apoplast proteome upon challenge with R. solanacearum in the susceptible tomato cultivar Marmande and the resistant cultivar Hawaii 7996. Here, we described the xylem proteome in these same cultivars and compared it with the apoplastic proteome, revealing variety-dependent and infection-dependent changes. This proteomic analysis led to the identification of pathogenesis-related 1 (PR1) proteins as highly induced upon infection. Since PR1b was the most abundant PR1 protein in both the apoplast and the xylem, we concentrated on this family member to study the role of PR1s in the interaction between tomato and R. solanacearum. Surprisingly, lack of PR1b resulted in enhanced resistance to R. solanacearum in tomato, which could be due to an up-regulation of homologous genes in a compensatory effect as has been reported before. PR1 processing by an unknown protease in tomato results in the generation of the CAPE peptide. Treatment of tomato plants with the CAPE1 peptide resulted in restriction of R. solanacearum growth, via defence gene reprogramming. Future work in the lab will help determine which tomato secreted proteases cleave PR1s to generate CAPEs.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"4340-4358"},"PeriodicalIF":5.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial diseases for which no effective treatment exists. There is an urgent need to understand the basis of resistance against this pathogen in order to engineer efficient strategies in the field. We previously demonstrated that resistant tomato plants limit bacterial movement in the apoplast and the xylem. As a first step to dissect the underlying mechanisms, we analysed the apoplast proteome upon challenge with R. solanacearum in the susceptible tomato cultivar Marmande and the resistant cultivar Hawaii 7996. Here, we described the xylem proteome in these same cultivars and compared it with the apoplastic proteome, revealing variety-dependent and infection-dependent changes. This proteomic analysis led to the identification of pathogenesis-related 1 (PR1) proteins as highly induced upon infection. Since PR1b was the most abundant PR1 protein in both the apoplast and the xylem, we concentrated on this family member to study the role of PR1s in the interaction between tomato and R. solanacearum. Surprisingly, lack of PR1b resulted in enhanced resistance to R. solanacearum in tomato, which could be due to an up-regulation of homologous genes in a compensatory effect as has been reported before. PR1 processing by an unknown protease in tomato results in the generation of the CAPE peptide. Treatment of tomato plants with the CAPE1 peptide resulted in restriction of R. solanacearum growth, via defence gene reprogramming. Future work in the lab will help determine which tomato secreted proteases cleave PR1s to generate CAPEs.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.