AI-Enhanced Virtual Reality Self-Talk for Psychological Counseling: Formative Qualitative Study.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES
Moreah Zisquit, Alon Shoa, Ramon Oliva, Stav Perry, Bernhard Spanlang, Anat Brunstein Klomek, Mel Slater, Doron Friedman
{"title":"AI-Enhanced Virtual Reality Self-Talk for Psychological Counseling: Formative Qualitative Study.","authors":"Moreah Zisquit, Alon Shoa, Ramon Oliva, Stav Perry, Bernhard Spanlang, Anat Brunstein Klomek, Mel Slater, Doron Friedman","doi":"10.2196/67782","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Access to mental health services continues to pose a global challenge, with current services often unable to meet the growing demand. This has sparked interest in conversational artificial intelligence (AI) agents as potential solutions. Despite this, the development of a reliable virtual therapist remains challenging, and the feasibility of AI fulfilling this sensitive role is still uncertain. One promising approach involves using AI agents for psychological self-talk, particularly within virtual reality (VR) environments. Self-talk in VR allows externalizing self-conversation by enabling individuals to embody avatars representing themselves as both patient and counselor, thus enhancing cognitive flexibility and problem-solving abilities. However, participants sometimes experience difficulties progressing in sessions, which is where AI could offer guidance and support.</p><p><strong>Objective: </strong>This formative study aims to assess the challenges and advantages of integrating an AI agent into self-talk in VR for psychological counseling, focusing on user experience and the potential role of AI in supporting self-reflection, problem-solving, and positive behavioral change.</p><p><strong>Methods: </strong>We carried out an iterative design and development of a system and protocol integrating large language models (LLMs) within VR self-talk during the first two and a half years. The design process addressed user interface, speech-to-text functionalities, fine-tuning the LLMs, and prompt engineering. Upon completion of the design process, we conducted a 3-month long exploratory qualitative study in which 11 healthy participants completed a session that included identifying a problem they wanted to address, attempting to address this problem using self-talk in VR, and then continuing self-talk in VR but this time with the assistance of an LLM-based virtual human. The sessions were carried out with a trained clinical psychologist and followed by semistructured interviews. We used applied thematic analysis after the interviews to code and develop key themes for the participants that addressed our research objective.</p><p><strong>Results: </strong>In total, 4 themes were identified regarding the quality of advice, the potential advantages of human-AI collaboration in self-help, the believability of the virtual human, and user preferences for avatars in the scenario. The participants rated their desire to engage in additional such sessions at 8.3 out of 10, and more than half of the respondents indicated that they preferred using VR self-talk with AI rather than without it. On average, the usefulness of the session was rated 6.9 (SD 0.54), and the degree to which it helped solve their problem was rated 6.1 (SD 1.58). Participants specifically noted that human-AI collaboration led to improved outcomes and facilitated more positive thought processes, thereby enhancing self-reflection and problem-solving abilities.</p><p><strong>Conclusions: </strong>This exploratory study suggests that the VR self-talk paradigm can be enhanced by LLM-based agents and presents the ways to achieve this, potential pitfalls, and additional insights.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e67782"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/67782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Access to mental health services continues to pose a global challenge, with current services often unable to meet the growing demand. This has sparked interest in conversational artificial intelligence (AI) agents as potential solutions. Despite this, the development of a reliable virtual therapist remains challenging, and the feasibility of AI fulfilling this sensitive role is still uncertain. One promising approach involves using AI agents for psychological self-talk, particularly within virtual reality (VR) environments. Self-talk in VR allows externalizing self-conversation by enabling individuals to embody avatars representing themselves as both patient and counselor, thus enhancing cognitive flexibility and problem-solving abilities. However, participants sometimes experience difficulties progressing in sessions, which is where AI could offer guidance and support.

Objective: This formative study aims to assess the challenges and advantages of integrating an AI agent into self-talk in VR for psychological counseling, focusing on user experience and the potential role of AI in supporting self-reflection, problem-solving, and positive behavioral change.

Methods: We carried out an iterative design and development of a system and protocol integrating large language models (LLMs) within VR self-talk during the first two and a half years. The design process addressed user interface, speech-to-text functionalities, fine-tuning the LLMs, and prompt engineering. Upon completion of the design process, we conducted a 3-month long exploratory qualitative study in which 11 healthy participants completed a session that included identifying a problem they wanted to address, attempting to address this problem using self-talk in VR, and then continuing self-talk in VR but this time with the assistance of an LLM-based virtual human. The sessions were carried out with a trained clinical psychologist and followed by semistructured interviews. We used applied thematic analysis after the interviews to code and develop key themes for the participants that addressed our research objective.

Results: In total, 4 themes were identified regarding the quality of advice, the potential advantages of human-AI collaboration in self-help, the believability of the virtual human, and user preferences for avatars in the scenario. The participants rated their desire to engage in additional such sessions at 8.3 out of 10, and more than half of the respondents indicated that they preferred using VR self-talk with AI rather than without it. On average, the usefulness of the session was rated 6.9 (SD 0.54), and the degree to which it helped solve their problem was rated 6.1 (SD 1.58). Participants specifically noted that human-AI collaboration led to improved outcomes and facilitated more positive thought processes, thereby enhancing self-reflection and problem-solving abilities.

Conclusions: This exploratory study suggests that the VR self-talk paradigm can be enhanced by LLM-based agents and presents the ways to achieve this, potential pitfalls, and additional insights.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信