PixelPrint4D: A 3D Printing Method of Fabricating Patient-Specific Deformable CT Phantoms for Respiratory Motion Applications.

IF 7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jessica Y Im, Neghemi Micah, Amy E Perkins, Kai Mei, Michael Geagan, Leonid Roshkovan, Peter B Noël
{"title":"PixelPrint4D: A 3D Printing Method of Fabricating Patient-Specific Deformable CT Phantoms for Respiratory Motion Applications.","authors":"Jessica Y Im, Neghemi Micah, Amy E Perkins, Kai Mei, Michael Geagan, Leonid Roshkovan, Peter B Noël","doi":"10.1097/RLI.0000000000001182","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Respiratory motion poses a significant challenge for clinical workflows in diagnostic imaging and radiation therapy. Many technologies such as motion artifact reduction and tumor tracking have been developed to compensate for its effect. To assess these technologies, respiratory motion phantoms (RMPs) are required as preclinical testing environments, for instance, in computed tomography (CT). However, current CT RMPs are highly simplified and do not exhibit realistic tissue structures or deformation patterns. With the rise of more complex motion compensation technologies such as deep learning-based algorithms, there is a need for more realistic RMPs. This work introduces PixelPrint4D, a 3D printing method for fabricating lifelike, patient-specific deformable lung phantoms for CT imaging.</p><p><strong>Materials and methods: </strong>A 4DCT dataset of a lung cancer patient was acquired. The volumetric image data of the right lung at end inhalation was converted into 3D printer instructions using the previously developed PixelPrint software. A flexible 3D printing material was used to replicate variable densities voxel-by-voxel within the phantom. The accuracy of the phantom was assessed by acquiring CT scans of the phantom at rest, and under various levels of compression. These phantom images were then compiled into a pseudo-4DCT dataset and compared to the reference patient 4DCT images. Metrics used to assess the phantom structural accuracy included mean attenuation errors, 2-sample 2-sided Kolmogorov-Smirnov (KS) test on histograms, and structural similarity index (SSIM). The phantom deformation properties were assessed by calculating displacement errors of the tumor and throughout the full lung volume, attenuation change errors, and Jacobian errors, as well as the relationship between Jacobian and attenuation changes.</p><p><strong>Results: </strong>The phantom closely replicated patient lung structures, textures, and attenuation profiles. SSIM was measured as 0.93 between the patient and phantom lung, suggesting a high level of structural accuracy. Furthermore, it exhibited realistic nonrigid deformation patterns. The mean tumor motion errors in the phantom were ≤0.7 ± 0.6 mm in each orthogonal direction. Finally, the relationship between attenuation and local volume changes in the phantom had a strong correlation with that of the patient, with analysis of covariance yielding P = 0.83 and f = 0.04, suggesting no significant difference between the phantom and patient.</p><p><strong>Conclusions: </strong>PixelPrint4D facilitates the creation of highly realistic RMPs, exceeding the capabilities of existing models to provide enhanced testing environments for a wide range of emerging CT technologies.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001182","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Respiratory motion poses a significant challenge for clinical workflows in diagnostic imaging and radiation therapy. Many technologies such as motion artifact reduction and tumor tracking have been developed to compensate for its effect. To assess these technologies, respiratory motion phantoms (RMPs) are required as preclinical testing environments, for instance, in computed tomography (CT). However, current CT RMPs are highly simplified and do not exhibit realistic tissue structures or deformation patterns. With the rise of more complex motion compensation technologies such as deep learning-based algorithms, there is a need for more realistic RMPs. This work introduces PixelPrint4D, a 3D printing method for fabricating lifelike, patient-specific deformable lung phantoms for CT imaging.

Materials and methods: A 4DCT dataset of a lung cancer patient was acquired. The volumetric image data of the right lung at end inhalation was converted into 3D printer instructions using the previously developed PixelPrint software. A flexible 3D printing material was used to replicate variable densities voxel-by-voxel within the phantom. The accuracy of the phantom was assessed by acquiring CT scans of the phantom at rest, and under various levels of compression. These phantom images were then compiled into a pseudo-4DCT dataset and compared to the reference patient 4DCT images. Metrics used to assess the phantom structural accuracy included mean attenuation errors, 2-sample 2-sided Kolmogorov-Smirnov (KS) test on histograms, and structural similarity index (SSIM). The phantom deformation properties were assessed by calculating displacement errors of the tumor and throughout the full lung volume, attenuation change errors, and Jacobian errors, as well as the relationship between Jacobian and attenuation changes.

Results: The phantom closely replicated patient lung structures, textures, and attenuation profiles. SSIM was measured as 0.93 between the patient and phantom lung, suggesting a high level of structural accuracy. Furthermore, it exhibited realistic nonrigid deformation patterns. The mean tumor motion errors in the phantom were ≤0.7 ± 0.6 mm in each orthogonal direction. Finally, the relationship between attenuation and local volume changes in the phantom had a strong correlation with that of the patient, with analysis of covariance yielding P = 0.83 and f = 0.04, suggesting no significant difference between the phantom and patient.

Conclusions: PixelPrint4D facilitates the creation of highly realistic RMPs, exceeding the capabilities of existing models to provide enhanced testing environments for a wide range of emerging CT technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Investigative Radiology
Investigative Radiology 医学-核医学
CiteScore
15.10
自引率
16.40%
发文量
188
审稿时长
4-8 weeks
期刊介绍: Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信