Unravelling the genetic contributors to linezolid resistance in Mycobacterium smegmatis: insights from a transposon library.

IF 3.9 2区 医学 Q1 INFECTIOUS DISEASES
Dachuan Lin, Yuanyi Zhang, Zhifei Luo, Jing Wang, Xinchun Chen
{"title":"Unravelling the genetic contributors to linezolid resistance in Mycobacterium smegmatis: insights from a transposon library.","authors":"Dachuan Lin, Yuanyi Zhang, Zhifei Luo, Jing Wang, Xinchun Chen","doi":"10.1093/jac/dkaf106","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to identify and characterize genes associated with linezolid resistance in Mycobacterium smegmatis using a transposon mutagenesis approach.</p><p><strong>Methods: </strong>This research conducted three replicative experiments where 16 isolates displaying pronounced resistance to linezolid were examined, revealing two distinct morphologies. WGS was employed to investigate these isolates, uncovering mutations in specific genes. The binding affinity of linezolid to relevant proteins was assessed through molecular docking studies and validated by drug affinity responsive target stability (DARTS) assays.</p><p><strong>Results: </strong>Complementation of the mspA gene in mutant strains restored linezolid susceptibility, but the Ala127Gln substitution in MSMEG_0965 did not, suggesting a critical role of this residue in resistance. Further investigations revealed that the resistance mechanism in the △MSMEG_0965 mutant involves impaired linezolid uptake.</p><p><strong>Conclusions: </strong>The research successfully identified two genes, MSMEG_4189 and MSMEG_0965, associated with linezolid resistance in M. smegmatis. It also elucidated the role of MSMEG_0965 in the resistance mechanism, providing significant targets and reference points for future studies on clinical strains.</p>","PeriodicalId":14969,"journal":{"name":"Journal of Antimicrobial Chemotherapy","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antimicrobial Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jac/dkaf106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aimed to identify and characterize genes associated with linezolid resistance in Mycobacterium smegmatis using a transposon mutagenesis approach.

Methods: This research conducted three replicative experiments where 16 isolates displaying pronounced resistance to linezolid were examined, revealing two distinct morphologies. WGS was employed to investigate these isolates, uncovering mutations in specific genes. The binding affinity of linezolid to relevant proteins was assessed through molecular docking studies and validated by drug affinity responsive target stability (DARTS) assays.

Results: Complementation of the mspA gene in mutant strains restored linezolid susceptibility, but the Ala127Gln substitution in MSMEG_0965 did not, suggesting a critical role of this residue in resistance. Further investigations revealed that the resistance mechanism in the △MSMEG_0965 mutant involves impaired linezolid uptake.

Conclusions: The research successfully identified two genes, MSMEG_4189 and MSMEG_0965, associated with linezolid resistance in M. smegmatis. It also elucidated the role of MSMEG_0965 in the resistance mechanism, providing significant targets and reference points for future studies on clinical strains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
5.80%
发文量
423
审稿时长
2-4 weeks
期刊介绍: The Journal publishes articles that further knowledge and advance the science and application of antimicrobial chemotherapy with antibiotics and antifungal, antiviral and antiprotozoal agents. The Journal publishes primarily in human medicine, and articles in veterinary medicine likely to have an impact on global health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信