Optimal filtering strategies for task-specific functional PET imaging.

IF 4.5 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Murray Bruce Reed, Magdalena Ponce de León, Sebastian Klug, Christian Milz, Leo Robert Silberbauer, Pia Falb, Godber Mathis Godbersen, Sharna Jamadar, Zhaolin Chen, Lukas Nics, Marcus Hacker, Rupert Lanzenberger, Andreas Hahn
{"title":"Optimal filtering strategies for task-specific functional PET imaging.","authors":"Murray Bruce Reed, Magdalena Ponce de León, Sebastian Klug, Christian Milz, Leo Robert Silberbauer, Pia Falb, Godber Mathis Godbersen, Sharna Jamadar, Zhaolin Chen, Lukas Nics, Marcus Hacker, Rupert Lanzenberger, Andreas Hahn","doi":"10.1177/0271678X251325668","DOIUrl":null,"url":null,"abstract":"<p><p>Functional Positron Emission Tomography (fPET) is an effective tool for studying dynamic processes in glucose metabolism and neurotransmitter action, providing insights into brain function and disease progression. However, optimizing signal processing to extract stimulation-specific information remains challenging. This study systematically evaluates state-of-the-art filtering techniques for fPET imaging. Forty healthy participants performed a cognitive task (Tetris®) during [<sup>18</sup>F]FDG PET/MR scans. Seven filtering techniques and multiple hyperparameters were tested: including 3D and 4D Gaussian smoothing, highly constrained backprojection (HYPR), iterative HYPR (IHYPR4D), MRI-Markov Random Field (MRI-MRF) filters, and dynamic/extended dynamic Non-Local Means (dNLM/edNLM). Filters were assessed based on test-retest reliability, task signal identifiability (temporal signal-to-noise ratio, tSNR), spatial task-based activation, and sample size calculations were assessed. Compared to 3D Gaussian smoothing, edNLM, dNLM, MRI-MRF L = 10, and IHYPR4D filters improved tSNR, while edNLM and HYPR enhanced test-retest reliability. Spatial task-based activation was enhanced by NLM filters and MRI-MRF approaches. The edNLM filter reduced the required sample size by 15.4%. Simulations supported these findings. This study highlights the strengths and limitations of fPET filtering techniques, emphasizing how hyperparamter adjustments affect outcome parameters. The edNLM filter shows promise with improved performance across all metrics, but filter selection should consider specific study objectives and resource constraints.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1760-1773"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251325668","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Functional Positron Emission Tomography (fPET) is an effective tool for studying dynamic processes in glucose metabolism and neurotransmitter action, providing insights into brain function and disease progression. However, optimizing signal processing to extract stimulation-specific information remains challenging. This study systematically evaluates state-of-the-art filtering techniques for fPET imaging. Forty healthy participants performed a cognitive task (Tetris®) during [18F]FDG PET/MR scans. Seven filtering techniques and multiple hyperparameters were tested: including 3D and 4D Gaussian smoothing, highly constrained backprojection (HYPR), iterative HYPR (IHYPR4D), MRI-Markov Random Field (MRI-MRF) filters, and dynamic/extended dynamic Non-Local Means (dNLM/edNLM). Filters were assessed based on test-retest reliability, task signal identifiability (temporal signal-to-noise ratio, tSNR), spatial task-based activation, and sample size calculations were assessed. Compared to 3D Gaussian smoothing, edNLM, dNLM, MRI-MRF L = 10, and IHYPR4D filters improved tSNR, while edNLM and HYPR enhanced test-retest reliability. Spatial task-based activation was enhanced by NLM filters and MRI-MRF approaches. The edNLM filter reduced the required sample size by 15.4%. Simulations supported these findings. This study highlights the strengths and limitations of fPET filtering techniques, emphasizing how hyperparamter adjustments affect outcome parameters. The edNLM filter shows promise with improved performance across all metrics, but filter selection should consider specific study objectives and resource constraints.

特定任务功能PET成像的最佳过滤策略。
功能正电子发射断层扫描(fPET)是研究葡萄糖代谢和神经递质作用动态过程的有效工具,可帮助人们深入了解大脑功能和疾病进展。然而,优化信号处理以提取特定刺激信息仍具有挑战性。本研究系统地评估了用于 fPET 成像的最先进滤波技术。40 名健康参与者在[18F]FDG PET/MR 扫描过程中执行了一项认知任务(俄罗斯方块®)。测试了七种滤波技术和多种超参数:包括三维和四维高斯平滑、高约束反投影(HYPR)、迭代 HYPR(IHYPR4D)、MRI-马尔科夫随机场(MRI-MRF)滤波器和动态/扩展动态非局部均值(dNLM/edNLM)。对滤波器的评估基于重复测试可靠性、任务信号可识别性(时间信噪比,tSNR)、基于任务的空间激活以及样本量计算。与三维高斯平滑相比,edNLM、dNLM、MRI-MRF L = 10 和 IHYPR4D 滤波器提高了 tSNR,而 edNLM 和 HYPR 提高了测试重复可靠性。NLM 滤波器和 MRI-MRF 方法增强了基于空间任务的激活。edNLM 过滤器将所需样本量减少了 15.4%。模拟支持了这些发现。这项研究突出了 fPET 滤波技术的优势和局限性,强调了超参数调整如何影响结果参数。edNLM滤波器有望改善所有指标的性能,但滤波器的选择应考虑具体的研究目标和资源限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信