Rational design of lanthanide-based metal-organic frameworks for CO2 capture using computational modeling.

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zeynep Pinar Haslak, Hasan Can Gulbalkan, Seda Keskin
{"title":"Rational design of lanthanide-based metal-organic frameworks for CO<sub>2</sub> capture using computational modeling.","authors":"Zeynep Pinar Haslak, Hasan Can Gulbalkan, Seda Keskin","doi":"10.1039/d5ma00017c","DOIUrl":null,"url":null,"abstract":"<p><p>Metal organic frameworks (MOFs) have emerged as promising materials in the context of CO<sub>2</sub> capture and separation. Thanks to their tunable nature, various functionalities can be introduced to improve their separation performances. Lanthanide MOFs (Ln-MOFs) with high coordination numbers offer a promising space for the design of new high-performing and stable adsorbents for gas adsorption and separation. In this study, we combined molecular simulations with quantum mechanical (QM) calculations for designing new hypothetical materials offering superior CO<sub>2</sub>/N<sub>2</sub> separation performances. An Ln-MOF having high CO<sub>2</sub>/N<sub>2</sub> selectivity and working capacity was originally selected and its linkers were exchanged with five different types of linkers and its metal atom was exchanged with 12 different Ln<sup>3+</sup> metals to generate 77 different types of hypothetic Ln-MOFs. Following the initial geometry optimizations at the molecular mechanics (MM) level, these structures were studied for CO<sub>2</sub>/N<sub>2</sub> separation by performing grand canonical Monte Carlo (GCMC) simulations. Five MOFs were found to outperform the original Ln-MOF structure and they were optimized at the QM level to obtain geometries with minimized total energy, which finally led to two hypothetic Ln-MOFs offering superior CO<sub>2</sub>/N<sub>2</sub> separation performance. The computational work that we described in this study will be useful for the rational design of new Ln-based MOFs with improved CO<sub>2</sub> separation properties.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5ma00017c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal organic frameworks (MOFs) have emerged as promising materials in the context of CO2 capture and separation. Thanks to their tunable nature, various functionalities can be introduced to improve their separation performances. Lanthanide MOFs (Ln-MOFs) with high coordination numbers offer a promising space for the design of new high-performing and stable adsorbents for gas adsorption and separation. In this study, we combined molecular simulations with quantum mechanical (QM) calculations for designing new hypothetical materials offering superior CO2/N2 separation performances. An Ln-MOF having high CO2/N2 selectivity and working capacity was originally selected and its linkers were exchanged with five different types of linkers and its metal atom was exchanged with 12 different Ln3+ metals to generate 77 different types of hypothetic Ln-MOFs. Following the initial geometry optimizations at the molecular mechanics (MM) level, these structures were studied for CO2/N2 separation by performing grand canonical Monte Carlo (GCMC) simulations. Five MOFs were found to outperform the original Ln-MOF structure and they were optimized at the QM level to obtain geometries with minimized total energy, which finally led to two hypothetic Ln-MOFs offering superior CO2/N2 separation performance. The computational work that we described in this study will be useful for the rational design of new Ln-based MOFs with improved CO2 separation properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信