Concentric Rate of Force Development, Squat Strength, and Faster Unloading Associated With Change-of-Direction Performance and Its Deficit in Female Volleyball Players.

IF 3.5 2区 医学 Q1 PHYSIOLOGY
Naoyuki Yamashita, Daisuke Sato, Akio Nagae, Takaaki Mishima
{"title":"Concentric Rate of Force Development, Squat Strength, and Faster Unloading Associated With Change-of-Direction Performance and Its Deficit in Female Volleyball Players.","authors":"Naoyuki Yamashita, Daisuke Sato, Akio Nagae, Takaaki Mishima","doi":"10.1123/ijspp.2024-0290","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Athletes who perform faster changes of direction (CODs) often exhibit superior leg strength, jumping performance, and linear sprint performance. However, these abilities only partially correlate with COD deficit (CODD), and relying solely on correlation analysis may lead to misinterpretations due to unaddressed, additive, or confounding effects. This study investigated the association between COD/CODD performance and various jump heights, countermovement-jump (CMJ) phase-specific performance, leg strength, and linear sprint performance. Multiple linear-regression models with stepwise selection were used to explore and adjust the additive effects and confounders of these factors.</p><p><strong>Methods: </strong>Eighteen female intercollegiate volleyball athletes performed 10- and 20-m linear sprints and proagility tests, and their CODD and physical performance metrics were measured. Furthermore, squat jump and CMJ height, back-squat 1-repetition maximum (BS1RM) corrected for body mass (relative), and CMJ phase-specific performance, including vertical force and rate of force development during eccentric unloading, yielding, braking, and concentric phases, were measured.</p><p><strong>Results: </strong>Concentric-phase rate of force development at 100 milliseconds, relative BS1RM, and squat-jump height were retained in the 10-m COD model (adjusted R2 = .515, P = .004). The absolute BS1RM and minimum power at the unloading phase of CMJ were retained in the 10-m CODD model (adjusted R2 = .746, P < .001). In contrast, no variables were retained in the 20-m COD model.</p><p><strong>Conclusions: </strong>The results suggest that enhancement of overall leg-contraction power and strength and rapid concentric force production immediately after eccentric braking may enhance 10-m COD/CODD performance in volleyball players.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":" ","pages":"1-9"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2024-0290","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Athletes who perform faster changes of direction (CODs) often exhibit superior leg strength, jumping performance, and linear sprint performance. However, these abilities only partially correlate with COD deficit (CODD), and relying solely on correlation analysis may lead to misinterpretations due to unaddressed, additive, or confounding effects. This study investigated the association between COD/CODD performance and various jump heights, countermovement-jump (CMJ) phase-specific performance, leg strength, and linear sprint performance. Multiple linear-regression models with stepwise selection were used to explore and adjust the additive effects and confounders of these factors.

Methods: Eighteen female intercollegiate volleyball athletes performed 10- and 20-m linear sprints and proagility tests, and their CODD and physical performance metrics were measured. Furthermore, squat jump and CMJ height, back-squat 1-repetition maximum (BS1RM) corrected for body mass (relative), and CMJ phase-specific performance, including vertical force and rate of force development during eccentric unloading, yielding, braking, and concentric phases, were measured.

Results: Concentric-phase rate of force development at 100 milliseconds, relative BS1RM, and squat-jump height were retained in the 10-m COD model (adjusted R2 = .515, P = .004). The absolute BS1RM and minimum power at the unloading phase of CMJ were retained in the 10-m CODD model (adjusted R2 = .746, P < .001). In contrast, no variables were retained in the 20-m COD model.

Conclusions: The results suggest that enhancement of overall leg-contraction power and strength and rapid concentric force production immediately after eccentric braking may enhance 10-m COD/CODD performance in volleyball players.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
12.10%
发文量
199
审稿时长
6-12 weeks
期刊介绍: The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信