{"title":"Evaluating the impact of amitriptyline on Nitric Oxide signaling in rat models of neuropathic pain.","authors":"Hamid Reza Mohammadi, Zahra Haghighatian, Behrouz Beiranvand, Peyman Amanolahi Baharvand, Amin Hasanvand","doi":"10.1080/08923973.2025.2481870","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nitric oxide (NO) plays a crucial role in the induction of neuropathic pain by stimulating the production of inflammatory cytokines. Additionally, research indicates that amitriptyline can inhibit nitric oxide production. In this study, we examined the inhibitory role of the nitric oxide signaling pathway through the administration of amitriptyline in the treatment of neuropathic pain.</p><p><strong>Methods: </strong>Forty rats were randomly assigned to five groups, with eight animals in each group: (1) Sham-operated, (2) Chronic constriction injury (CCI), (3) CCI plus amitriptyline, (4) CCI plus amitriptyline and L-arginine, and (5) CCI plus amitriptyline and L-NAME. Behavioral tests, including thermal hyperalgesia, cold allodynia, and mechanical allodynia, were conducted on the fourth, seventh, and fourteenth days following CCI induction. On the final day, spinal cord samples were collected to assess the levels of inflammatory cytokines. Additionally, the sciatic nerve was isolated on the same day for histological examination.</p><p><strong>Results: </strong>The results indicated that the administration of amitriptyline can reduce levels of inflammatory cytokines and improve symptoms of neuropathic pain. It should be noted that the simultaneous use of L-NAME and amitriptyline increases the therapeutic impacts of amitriptyline. However, the beneficial effects of amitriptyline are reduced by the nitric oxide stimulation induced by L-arginine.</p><p><strong>Conclusion: </strong>It was determined that one of the mechanisms by which amitriptyline ameliorates neuropathic pain is the inhibition of the nitric oxide signaling pathway. In this study, this effect was associated with a reduction in the release of inflammatory cytokines and a decrease in inflammation surrounding the nerve.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"1-9"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2025.2481870","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Nitric oxide (NO) plays a crucial role in the induction of neuropathic pain by stimulating the production of inflammatory cytokines. Additionally, research indicates that amitriptyline can inhibit nitric oxide production. In this study, we examined the inhibitory role of the nitric oxide signaling pathway through the administration of amitriptyline in the treatment of neuropathic pain.
Methods: Forty rats were randomly assigned to five groups, with eight animals in each group: (1) Sham-operated, (2) Chronic constriction injury (CCI), (3) CCI plus amitriptyline, (4) CCI plus amitriptyline and L-arginine, and (5) CCI plus amitriptyline and L-NAME. Behavioral tests, including thermal hyperalgesia, cold allodynia, and mechanical allodynia, were conducted on the fourth, seventh, and fourteenth days following CCI induction. On the final day, spinal cord samples were collected to assess the levels of inflammatory cytokines. Additionally, the sciatic nerve was isolated on the same day for histological examination.
Results: The results indicated that the administration of amitriptyline can reduce levels of inflammatory cytokines and improve symptoms of neuropathic pain. It should be noted that the simultaneous use of L-NAME and amitriptyline increases the therapeutic impacts of amitriptyline. However, the beneficial effects of amitriptyline are reduced by the nitric oxide stimulation induced by L-arginine.
Conclusion: It was determined that one of the mechanisms by which amitriptyline ameliorates neuropathic pain is the inhibition of the nitric oxide signaling pathway. In this study, this effect was associated with a reduction in the release of inflammatory cytokines and a decrease in inflammation surrounding the nerve.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).