{"title":"Development of catecholaminergic neurons of Otp-lineage in the medial extended amygdala and related forebrain centers.","authors":"Lorena Morales, Ester Desfilis, Loreta Medina","doi":"10.3389/fnana.2025.1553952","DOIUrl":null,"url":null,"abstract":"<p><p>Catecholaminergic (CA) neurons of the medial extended amygdala, preoptic region and adjacent alar hypothalamus have been involved in different aspects of social behavior, as well as in modulation of homeostasis in response to different stressors. Previous data suggested that at least some CA neurons of the medial extended amygdala could originate in a hypothalamic embryonic domain that expresses the transcription factor Otp. To investigate this, we used Otp-eGFP mice (with permanent labeling of GFP in Otp cells) to analyze coexpression of GFP and tyrosine hydroxylase (TH) throughout ontogenesis by way of double immunofluorescence. Our results provide evidence that some forebrain CA cells belong to the Otp lineage. In particular, we found small subpopulations of TH cells that coexpress GFP within the medial extended amygdala, the periventricular preoptic area, the paraventricular hypothalamus, the periventricular hypothalamus, as well as some subdivisions of the basal hypothalamus. In some of the Otp cells, such as those of extended amygdala, the expression of TH appears to be transitory, in agreement with previous studies. The results open interesting questions about the role of these Otp versus non-Otp catecholaminergic subpopulations during development, network integration and in modulation of different functions, including homeostasis and social behaviors.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1553952"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2025.1553952","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Catecholaminergic (CA) neurons of the medial extended amygdala, preoptic region and adjacent alar hypothalamus have been involved in different aspects of social behavior, as well as in modulation of homeostasis in response to different stressors. Previous data suggested that at least some CA neurons of the medial extended amygdala could originate in a hypothalamic embryonic domain that expresses the transcription factor Otp. To investigate this, we used Otp-eGFP mice (with permanent labeling of GFP in Otp cells) to analyze coexpression of GFP and tyrosine hydroxylase (TH) throughout ontogenesis by way of double immunofluorescence. Our results provide evidence that some forebrain CA cells belong to the Otp lineage. In particular, we found small subpopulations of TH cells that coexpress GFP within the medial extended amygdala, the periventricular preoptic area, the paraventricular hypothalamus, the periventricular hypothalamus, as well as some subdivisions of the basal hypothalamus. In some of the Otp cells, such as those of extended amygdala, the expression of TH appears to be transitory, in agreement with previous studies. The results open interesting questions about the role of these Otp versus non-Otp catecholaminergic subpopulations during development, network integration and in modulation of different functions, including homeostasis and social behaviors.
期刊介绍:
Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.