Lin Li, Min Peng, Yifang Zou, Yunxin Li, Peng Qiao
{"title":"The promise and limitations of artificial intelligence in CTPA-based pulmonary embolism detection.","authors":"Lin Li, Min Peng, Yifang Zou, Yunxin Li, Peng Qiao","doi":"10.3389/fmed.2025.1514931","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography pulmonary angiography (CTPA) is an essential diagnostic tool for identifying pulmonary embolism (PE). The integration of AI has significantly advanced CTPA-based PE detection, enhancing diagnostic accuracy and efficiency. This review investigates the growing role of AI in the diagnosis of pulmonary embolism using CTPA imaging. The review examines the capabilities of AI algorithms, particularly deep learning models, in analyzing CTPA images for PE detection. It assesses their sensitivity and specificity compared to human radiologists. AI systems, using large datasets and complex neural networks, demonstrate remarkable proficiency in identifying subtle signs of PE, aiding clinicians in timely and accurate diagnosis. In addition, AI-powered CTPA analysis shows promise in risk stratification, prognosis prediction, and treatment optimization for PE patients. Automated image interpretation and quantitative analysis facilitate rapid triage of suspected cases, enabling prompt intervention and reducing diagnostic delays. Despite these advancements, several limitations remain, including algorithm bias, interpretability issues, and the necessity for rigorous validation, which hinder widespread adoption in clinical practice. Furthermore, integrating AI into existing healthcare systems requires careful consideration of regulatory, ethical, and legal implications. In conclusion, AI-driven CTPA-based PE detection presents unprecedented opportunities to enhance diagnostic precision and efficiency. However, addressing the associated limitations is critical for safe and effective implementation in routine clinical practice. Successful utilization of AI in revolutionizing PE care necessitates close collaboration among researchers, medical professionals, and regulatory organizations.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1514931"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1514931","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computed tomography pulmonary angiography (CTPA) is an essential diagnostic tool for identifying pulmonary embolism (PE). The integration of AI has significantly advanced CTPA-based PE detection, enhancing diagnostic accuracy and efficiency. This review investigates the growing role of AI in the diagnosis of pulmonary embolism using CTPA imaging. The review examines the capabilities of AI algorithms, particularly deep learning models, in analyzing CTPA images for PE detection. It assesses their sensitivity and specificity compared to human radiologists. AI systems, using large datasets and complex neural networks, demonstrate remarkable proficiency in identifying subtle signs of PE, aiding clinicians in timely and accurate diagnosis. In addition, AI-powered CTPA analysis shows promise in risk stratification, prognosis prediction, and treatment optimization for PE patients. Automated image interpretation and quantitative analysis facilitate rapid triage of suspected cases, enabling prompt intervention and reducing diagnostic delays. Despite these advancements, several limitations remain, including algorithm bias, interpretability issues, and the necessity for rigorous validation, which hinder widespread adoption in clinical practice. Furthermore, integrating AI into existing healthcare systems requires careful consideration of regulatory, ethical, and legal implications. In conclusion, AI-driven CTPA-based PE detection presents unprecedented opportunities to enhance diagnostic precision and efficiency. However, addressing the associated limitations is critical for safe and effective implementation in routine clinical practice. Successful utilization of AI in revolutionizing PE care necessitates close collaboration among researchers, medical professionals, and regulatory organizations.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world